
GEHR System Architectures
Rev 2.1 draft B
GEHR System Architectures

Authors: Thomas Beale

Revision: 2.1 draft B

Pages: 31
Author: Thomas Beale Page 1 of 31 Date of Issue:3/Mar/03

© 1997 - 2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

© 1997 - 2000
The GEHR Foundation

email: info@gehr.org web: www.gehr.org

GEHR System Architectures
Rev 2.1 draft B
Amendment Record

Issue Details Who Date

1.1 draft A Initial Writing; content from architecture document T Beale 9 Feb 2000

2.1 draft A Major re-organisation of structure, addition of new
content, including general architectural pattern.

T Beale 5 May 2000

2.1 draft B Addition of DEMOGRAPHIC_MANAGER to main
diagram.

T Beale 20 Aug 2000
Date of Issue:3/Mar/03 Page 2 of 31 Author: Thomas Beale

© 1997 - 2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

GEHR System Architectures
Rev 2.1 draft B
Table of Contents

1 Introduction.. 5
1.1 Purpose...5
1.2 Browsing This Document ..5
1.3 Status..5
1.3.1 Peer review ..5

2 Overview ... 6
2.1 General Architectural Model ...6
2.2 Document Overview ..6

3 Philosophical Approach... 9
3.1 Abstract Model versus Format Prescription ..9
3.2 Record Representation ...11
3.3 Seamless Software Development...11

4 Taxonomy of Deliverables ... 13
4.1 Overview..13
4.2 The Kernel ...14
4.3 The Kernel API ..14
4.4 Derived API Expressions...16
4.5 Archetype Definitions..16
4.6 Applications ...16
4.7 Database Schemas..17
4.8 Exchange Definitions...17

5 Application Architectures ... 18
5.1 Standalone (1-tier) Applications ..18
5.2 Client/Server (2-tier) Applications ..19
5.3 Distributed Object Applications (n-tier) ..20
5.4 Web-based Systems ...22

6 Databases .. 23
6.1 Simple Persistence ...23
6.2 Simple Databases ...23
6.3 Object Persistence..23
6.4 Object Databases..24
6.5 Relational Database Management Systems ...24
6.6 Non-Relational DBMSs...26
6.6.1 MUMPS...26

7 System Architectures ... 27
7.1 Overview..27
7.1.1 Archetype Domain System..27
7.1.2 Terminology Server ...27
7.1.3 Demographic Servers and Identification Systems.........................27
7.2 Small Clinic Architecture ..27
7.3 Hospital Architecture ...27
7.4 Distributed Architecture ..27

A References ... 29
Author: Thomas Beale Page 3 of 31 Date of Issue:3/Mar/03

© 1997, 1998, 1999 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

GEHR System Architectures
Rev 2.1 draft B
A.1 Health IT.. 29
A.2 Software Engineering .. 29
A.3 Technology .. 29
Date of Issue:3/Mar/03 Page 4 of 31 Author: Thomas Beale

© 1997, 1998, 1999 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

GEHR System Architectures Introduction
Rev 2.1 draft B
1 Introduction

1.1 Purpose
This document describes application and system architectures based on the Good
Electronic Health Record (GEHR) kernel.

The intended audience includes:

• GEHR application and system architects.

• Health Information System managers wishing to understand the GEHR
architecture.

Req: legal:faith-
ful p19

This document references the The GEHR Object Model Technical Requirements
and requirements in that document in particular. The format of these requirement
references is <requirement label> p<page number> appearing in the side column.
An example is given of the requirement for faithful recording of information which
appears on page 19 of that document.

1.2 Browsing This Document
This document has active web links which will launch your web browser. These
links are displayed as a hyperlink and will usually give the web address. If click-
ing on this hyperlink does not launch your web browser then you can set this up by
choosing the Acrobat menu options File > Preferences > Weblink... and completing
the dialog box.

1.3 Status
This document is under development, and will be published for inclusion in stand-
ards proposals and as documentation for software implementations.

The latest version can be found on http://www.gehr.org.

1.3.1 Peer review
Known omissions or questions are indicated in the text with paragraphs like the fol-
lowing:

To Be Determined: not yet resolved

To Be Continued:more work required

Reviewers are encouraged to comment on and/or advise on these paragraphs as
well as the main content.

The content of this document can be supplied in Adobe PDF or HTML format on
request, to facilitate electronic markup.

Please send requests for information and review comments to info@gehr.org.
Author: Thomas Beale Page 5 of 31 Date of Issue:3/Mar/03

http://www.gehr.org

Overview GEHR System Architectures
Rev 2.1 draft B
2 Overview

2.1 General Architectural Model
Because GEHR proposes an information model from which software artifacts can
be derived, numerous architectural possibilities are available, undoubtedly includ-
ing some unforeseen by the original authors of GEHR. The aim of this document is
therefore to describe the most likely architectural possibilities. While the details
may be quite different, all GEHR-based systems consist of the following elements:

• User Applications, consisting of:

- An application specific part, typically a GUI interface.
- The GEHR kernel.
- A client for a persistence mechanism (database).

• Archetype Initialiser application, which converts XML archetypes to
internal form for GEHR applications to use.

• Demographic Manager application, which converts information from
the demographic server to internal form for GEHR applications to use.

• A database, containing repositories for:

- EHRs created/modified/viewed by applications.
- Locally used GEHR archetypes.
- Locally created GEHR archetype XML documents, where these

exist.

• Terminology server(s), which provide access to well-known term sets
such as UMLS, ICPC and so on. The simplest version of this might be a
small local application serving terms from a file of locally defined terms;
a more sophisticated version might be an implementation of the COR-
BAmed TQS specification.

• Demographic server, providing identification of person and organisa-
tional entities. At its most minimal form, this might be a simple local data-
base; the most sophisticated version might be an implementation of the
CORBAmed PIDS specification.

• Archetype domain server, providing access to the GEHR archetype
domain system.

FIGURE 1 illustrates a notional GEHR system containing these elements.

2.2 Document Overview
The remainder of this document begins by considering the philosophical basis for
using an abstract, formal model to describe health record semantics, and shows why
such a model is essential in avoiding the weaknesses of protocol- or schema-based
record definitions. In this approach, the GEHR Object Model (GOM) is the central
definitional artifact from which protocol definitions, database schemas, software
applications and documents are developed.
Date of Issue:3/Mar/03 Page 6 of 31 Author: Thomas Beale

© 1997-2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

Online
ID

Systems

Demographic
Serverlish/

cribe)

KERNEL

XML

EHR DB

<content>

<value: 74 mg>
<name: xxxx>

</content>
<protocol>

<group>
<value>

<name:xxxx>
<value:xxxx>

</value>
</group>

</protocol>

<content>

<value: 74 mg>
<name: xxxx>

</content>
<protocol>

<group>
<value>

<name:xxxx>
<value:xxxx>

</value>
</group>

</protocol>

<content>

<value: 74 mg>
<name: xxxx>

</content>
<protocol>

<group>
<value>

<name:xxxx>
<value:xxxx>

</value>
</group>

</protocol>

parser KERNEL

EHR
GUI application

Local XML
Archetype DB

Archetype
Initialiser

Archetype
Editor

Documents
EHR System

K
E

R
N

E
L

X
M

L
pa

rs
er

Local
Archetype
Domain
Server

Archetype
Domain
Server

Health Care Facility

FIGURE 1 General Architecture of GEHR Systems

Online
Terminology

Systems

Archetype

Archetype QA
Process

Local
Term

Server

Local
Security
Server

Online
Security

Infrastructure?

PARTY DB

KERNEL

DEMOGRAPHIC
_MANAGER

PARTYs

(pub
subs

EHRs

Overview GEHR System Architectures
Rev 2.1 draft B
The development taxonomy of the GOM and its software is described, showing the
relationships between the GOM, the GOM kernel, the kernel API, applications,
database schemas and archetype definitions.

The subsequent major sections then describe application architectures, database
architectures and system architectures in turn. The application architectures section
deals with building standalone, client/server and distributed applications, while the
database section shows how EHRs can be stored using various database technolo-
gies. The systems architecture section describes how these can come together in
real systems to be used for clinical settings, from the smallest general practitioner
clinic to large hospitals.
Date of Issue:3/Mar/03 Page 8 of 31 Author: Thomas Beale

© 1997-2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

GEHR System Architectures Philosophical Approach
Rev 2.1 draft B
3 Philosophical Approach

As a basis for understanding how GEHR systems are built, it is worth addressing
some philosophical questions commonly asked of models such as the GOM,
namely:

• Why use an abstract model (the GEHR Object Model), why not just
describe the record format or transmission protocol?

• How does it translate to a “concrete” health record, i.e. a file or string of
bytes which can be stored in a database, or read by software?

• How does it facilitate development of software, databases, etc?

The following subsections deal with these questions in turn.

3.1 Abstract Model versus Format Prescription
To answer the first question, refer to FIGURE 2. This places the GOM at the centre
of a number of computer abstractions (see the red triangle marked “Formal
Model”). The GOM is:

• A computer version of what we want to say about information structures,
hence it is shown as being a formalisation of mental concepts.

• A source from which various other representations can be created, hence
the transformations of the model into software, database schema, and doc-
umentary forms.

The need for a model is a consequence of the need to make explicit the semantics of
the record and its operations. Without a model whose primary purpose is to express
semantics, implementation expressions such as protocols or database schemas
whose primary job is to concretely define tables or data packets end up also trying
to implicitly express semantic concepts, usually imperfectly.

The purpose of an explicit model is to be a repository of concepts, not a prescription
for representation. Not only does this avoid it being tied to a particular representa-
tion, it addresses the problem that not all semantics we want to record are expressi-
ble in formalisms used to describe particular formats, in particular constraints and
functional interfaces. In terms of a piece of software, a format description only
addresses the question of how to encode a record in a database or on a network, but
does not comprehensively treat how applications should allow only valid informa-
tion structures to be built.

see: section 4.5 on
page 48 of The

GEHR Object Model
Technical

Requirements

Using a neutral formalism is a safe thing to do as long as there is a way to get from
it to any particular formalism required for software development. The formalisms
of interest are those by which electronic healthcare systems will communicate
records; there is no direct requirement on the construction of software. As dis-
cussed in the Requirements, communication implies representation, which in turn
requires particular format descriptions. For the typical modes of communication -
file, database, object distribution or messaging - there are various standard and not-
so-standard formats.
Author: Thomas Beale Page 9 of 31 Date of Issue:3/Mar/03

Philosophical Approach GEHR System Architectures
Rev 2.1 draft B
interpretation,
analysis

Model

DB
Schema

Software
Library

Exchange
Definition

MultiMedia
Browser

Report
Generator

Data
Entry App

Exchange
App

Document
View

Mental
Model

Imagined,
Constructed,

Invented

formalisation

Realtime
Update

Mind
o

b
se

rv
at

io
n

Information
Model
Model
View

Software

knowledge
flow

data flow

Formal

abstraction,
construction

FIGURE 2 Taxonomy of Object Models and Software

bindings or mappings

binding rules/
mapping tables

Application

Database

Reality

realitime
monitoring

perception
cognition

clinical experience
paper records

clinical norms
GEHR req’ts

IT
Development

e.g. Eiffel

e.g. ODMG ODL e.g. OMG IDL
HL7

Computer
System

Software
API

e.g. COM

e.g. XML
Date of Issue:3/Mar/03 Page 10 of 31 Author: Thomas Beale

© 1997-2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

GEHR System Architectures Philosophical Approach
Rev 2.1 draft B
3.2 Record Representation
The problem of how to get from an abstract model to an actual health record is
addressed by providing expressions of the model in such formats. As mentioned in
the Requirements, there are two ways to do this: via a binding (set of rules via
which a transformation can be made at any time), or via a mapping (a complete
expression of the model in the target format). There are already standard bindings
for popular media, and it is expected that certain mappings (e.g. the GEHR
Exchange Format) will be devised as part of this project.

3.3 Seamless Software Development
Moving from an abstract model to a concrete representation in a given protocol or
format requires a seamless relationship between two software entities.

A number of criteria for modelling formalisms were discussed in the Technical
Requirements, including implementability, semantic power, and clarity. We can add
a further property, highly desirable from the design and implementation perspec-
tive: that of seamlessness. Briefly put, seamlessness is a property of software arti-
facts such that the expression of the model embodied in the software at different
levels of abstraction is done using essentially the same formalism. More concretely,
if software is constructed seamlessly, the analysis, design and implementation arti-
facts will all be views, at decreasing levels of abstraction, of a single underlying
model (some theorists believe even that the requirements can be seamless with the
other artifacts, but this relies on assumptions too strict to be generally useful, at
least with today’s tools).

Contrast this with the usual (and lamentably, often accepted) situation in software
development where analysis and design models are typically expressed in some
diagramming notation, and used as a basis for system design, review, and as a
source document for the implementation, itself done in a different language. Once
the implementation starts, it takes on a life of its own: discoveries are made which
change the original design model. However, it is usally too difficult to track these
changes and make the corresponding changes to the design model. Consequently,
the implementation drifts away from the design, rendering it an out-of-date,
untrustworthy document, of little use to maintainers or new developers learning the
system. A similar lack of traceability to the requirements document leaves it in an
even worse state, relegating it simply to a historical snapshot.

The use of seamless formalisms on the other hand allows us to pursue what should
perhaps be one of the basic goals of any systems engineering endeavour: the crea-
tion and maintenance of “living” models and documents, whose validity does not
diminish with time. To see how important this goal is, one only needs to consider
the costs of not being seamless: vastly increased maintenance costs, the high cost of
modifications and enhancements (particularly to requirements or design, let alone
implementation), the lost opportunity costs of being unable to implement desired
changes, and the costs of being unable to effectively reuse any of the previously
developed artifacts. “Maintenance” is generally estimated to cost a minumum of 50
- 70% of the total cost of a system over its lifetime.

The importance of maintainability and extensibility of systems based on a model
for clinical records is clear: the first release of the model (and software based on it)
Author: Thomas Beale Page 11 of 31 Date of Issue:3/Mar/03

Philosophical Approach GEHR System Architectures
Rev 2.1 draft B
will only be the beginning. Initial user feedback, new clinical practise models (e.g.
evidence-based medicine), increasing sophistication of second order requirements
(reporting, decision support, population medicine etc) and so on will all contribute
to the evolution of the model; but so will implementation concerns. If any GEHR
implementation is not to drift away from its originating model, making the claim
that the implementation “conforms to” or “is based on” the model increasingly
doubtful, seamlessness is essential.

In FIGURE 2, the knowledge flow lines (solid and dashed blue) from the formal
model (red triangle) indicate seamless relationships. For any such relationship, the
entities at either end are (as much as possible) rigorous transforms of each other,
expressed in different formalisms. Thus, an expression of the model in Eiffel can be
converted to an XML documentary form, which is useful for viewing records in a
web browser, transferring textual versions of the record and so on.

While FIGURE 2 represents an ideal, many aspects of it are attainable (all the rele-
vant technology exists), and given that expressions of the GOM are likely to be
required in numerous forms, a crucial one to keep in mind. The alternative is a sea
of informally “GEHR-compliant” software, databases, and documents.
Date of Issue:3/Mar/03 Page 12 of 31 Author: Thomas Beale

© 1997-2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

GEHR System Architectures Taxonomy of Deliverables
Rev 2.1 draft B
4 Taxonomy of Deliverables

4.1 Overview
Let us consider the actual expressions of the GOM likely to be required for con-
structing computer systems, beginning with the simple application illustrated in
FIGURE 3.

This typical EHR application which uses a client/server database, is constructed
using a GOM kernel component. In this architecture, the kernel component creates
and manipulates EHR information according to the GOM semantics, in response to
calls through the kernel API interface (shown in this example as a COM interface).
The view of the record seen by the application software is provided by the kernel
API.

Important questions for software developers include:

• Why use a kernel component?

• How is the kernel developed from the GOM?

• How is the kernel API specified?

• How are applications developed?

• What are archetype definitions, and how are they developed?

The first of these is possibly the most important. The GEHR kernel is a component
which may be used by other applications and systems for the purpose of reliably
creating, storing and retrieving EHRs. Since it is reusable component, its develop-
ment can be limited to a small number of organisations, rather than being rein-
vented at each GEHR site. There are a number of advantages to such an approach:

Persistence Binding

DBMS

GOM
(Eiffel)

KERNEL
(lang X)

Persistence API

Kernel API
COM Interface

FIGURE 3 Typical Application Architecture

Application

network
Author: Thomas Beale Page 13 of 31 Date of Issue:3/Mar/03

Taxonomy of Deliverables GEHR System Architectures
Rev 2.1 draft B
• More reliable kernels can be built, since each one will benefit from wider
usage (and therefore defect detection) than numerous separate implemen-
tations of the GOM.

• A kernel approach vastly reduces the number of implementations requir-
ing compliance testing, since only the kernel itself needs to be tested; it
enables a more realistic (i.e. small) number of developers to take part in
the standards process, thereby ensuring that software requirements are
fully satisfied.

• GEHR compliance of an application or system comes automatically by
using a GEHR-compliant kernel.

• Application developers can ignore the intricacies of the GOM, since they
only have to comply with a kernel API.

• Vendors do not need to be directly involved in the standards and develop-
ment process in order to ensure their software will be attractive for users:
all that is required is to conform to the published software interface of the
GOM kernel

• Software users, i.e. clinicians, have the freedom to use software from any
GEHR-compliant vendor, rather than being locked into a single vendor.
No one vendor will own the “doctor’s desktop”.

The overall effect is to raise the quality of EHR systems, and vastly increase their
interoperatbility.

FIGURE 4 shows the principal lines of development of the various parts of GOM
software architectures. The arrows indicate how each deliverable is derived from
the previous one.

4.2 The Kernel
The kernel is developed based directly on the GOM. Its purpose is to implement the
semantics of the GOM, that is, to be capable of constructing GOM EHR structures,
and process them according to the GOM semantics. Further, it has to make appro-
priate calls to a database layer in order to store and retrieve EHRs.

see: Gamma E.,
Helm R., Johnson R.,

and Vlissides, J. -
Design patterns of
Reusable Object-
oriented Software

The process of developing a kernel implementation of the GOM therefore involves
building a completely implemented object model (class model), either as a direct
extension of the GOM as expressed in Eiffel, or as an equivalent in another lan-
guage. Various development approaches are possible, including direct inheritance,
or the use of the so-called “bridge” pattern.

4.3 The Kernel API
The kernel API is the interface with which software developers are primarily con-
cerned, and may be quite different from the GOM. In fact, any number of APIs are
possible, and whilst each must be technically a formal mapping of the GOM, this is
not the best way to understand it; rather, the API should be understood as a func-
tional interface designed to make application development easy and efficient. As a
consequence, the kernel API should be designed to reflect the temporal function
call patterns, and to some extent, “convenience” functions and ready-made queries
expected of applications. Since there may be different classes of applications (e.g.
Date of Issue:3/Mar/03 Page 14 of 31 Author: Thomas Beale

© 1997-2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

GEHR System Architectures Taxonomy of Deliverables
Rev 2.1 draft B
an intensive care unit software application may be concerned only with immediate
life signals and observed data of the patient, whereas GP software has broader con-
cerns), more than one API may be appropriate for interfacing with a kernel.

The best general approach for a kernel API is to remain simple, and to use a
“proxy” concept, that is to say: the kernel creates and modifies EHR structures on
behalf of applications. The following characteristics should be aimed for:

• A fairly flat set of objects and member functions.

• Routines whose arguments and return types are either:

- basic types, such as string, integer, date, or multimedia blobs, or
- archetype definitions, expressed using XML (which is in fact

just a long string).

FIGURE 4 Taxonomy of GOM-derived Deliverables

GOM
(Eiffel)

KERNEL

(prog lang X)

Kernel API

(GOM Implementation)

(prog lang X)

Kernel API
(other prog lang)

Exchange Def
(CORBA IDL)

Kernel API Interface
(MS COM)

DXML
Archetype
Definition

COM ApplicationCORBA ApplicationApplication

Database
Schema

(ODMG-93)

Database
Schema

(obj/rel)

Exchange Def
(DCOM)

Kernel API Interface
(CORBA IDL)

DCOM ServerCORBA Server

API-like deliverables

GOM-like deliverables

Clinical
Model

T
D

DXML
Archetype
Definition

T
D

DXML
Archetype
Definition

T
D

Author: Thomas Beale Page 15 of 31 Date of Issue:3/Mar/03

Taxonomy of Deliverables GEHR System Architectures
Rev 2.1 draft B
• The kernel uses internal cursors to keep track of what it is building, and
returns “paths” (unique locators) enabling the application to remember
parts of the record it has created or retrieved.

• No genericity or inheritance as in the GOM, thus allowing applications to
be written in non-object or partly-object languages such as Visual Basic
and Delphi.

Notwithstanding the above, the API will still reflect the semantics of the GOM, by
requiring functions to be called in a certain order, preconditions to be met and so
on. Thus it acts as an interpretation of the GOM suitable for use in software devel-
opment.

see: www.omg.org/
home/corbamed

Published APIs on which GEHR APIs may be based include the CORBAmed
COAS, PIDS and LQS interfaces, and the APIs of existing applications. The former
are appropriate for use in a middleware environment as well as for local applica-
tions, however existing applications may have further requirements for using the
kernel as a linked component.

4.4 Derived API Expressions
Once the kernel API has been defined, many derivations of it are possible. There
are at least two reasons to do this:

• To provide the same API in a different language. For example, a native
Eiffel API will usually need to be made available in C, C++ and Java.

• To make the kernel available as a binary component, for local or distrib-
uted application construction. In this case, COM or CORBA mappings of
the API are used.

In both cases, the development of the API expressed in a new formalism should be
very simple, and could probably be automated in some circumstances.

4.5 Archetype Definitions
see: www.w3.org for

XML, XMI
Archetypes define particular clinical models in terms of the informational primi-
tives available in the GOM. Each definition is thus created by considering a con-
crete clinical model, such as “blood pressure”, “kidney disease”, etc and
determining how to express it using the PROPOSITION_XXX, PHENOMENON_XXX
etc structures of the GOM. Archetypes need to be available as structured docu-
ments, so as to be authored outside the EHR system environment, and are thus
expressed in an XML schema language; consequently, standard schema expressions
for the GOM concepts will be developed once and used in all archetypes. Thus, the
GOM determines the schema for archetype documents, while the content is defined
by clinical models.

4.6 Applications
Software developers building new applications, or integrating existing ones, are
concerned only with the published API in their chosen language, e.g. Java, or
COM. Remembering that only simple data or XML crosses the API, there are no
Date of Issue:3/Mar/03 Page 16 of 31 Author: Thomas Beale

© 1997-2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

GEHR System Architectures Taxonomy of Deliverables
Rev 2.1 draft B
real constraints on how applications can function, other than they need to obey the
requirements of the API in creating or modifying EHRs.

Distributed applications can be developed using a COM or CORBA mapping of the
API.

4.7 Database Schemas
Unlike the application software, schemas for database will be driven directly from
the model rather than the API, since the aim of a persistence medium is to store
information structures as faithfully as possible. Therefore the same object concepts
as appear in the GOM - transactions, extracts, propositions, phenomena etc - will
appear in database schemas.

see: Cattel R.G.G.
(ed.) - The Object

Database Standard:
ODMG-93, Release

2.0

For an object-oriented database, the schema will be expressed in ODMG-93’s
Object Definition Language (ODL - a language similar to CORBA IDL) or a vari-
ant, and will be a relatively straighforward transformation of the model.

For a relational database system, a schema needs to be devised which enables
object structures to map cleanly to table structures. The best approach to use is to
develop an “object/relational” schema, in which concepts like inheritance and
aggregation have standard mappings, rather than the usual 3rd normal form type of
schema.

4.8 Exchange Definitions
In order to reliably transmit EHRs between HCFs (Health Care Facilities),
exchange software must be used. Today, this mainly follows the models of CORBA
and DCOM, in which a logical structural definition is used, (similar to an object
database schema), and tools are used to produce client and server "stubs", which
may be integrated into the respective end of a distributed application. The defini-
tions are written in yet another object formalism, OMG IDL for CORBA, and
Microsoft IDL for DCOM.

In terms of the taxonomy of deliverables above, they may derived from the API
(light blue API mappings in FIGURE 4) if they are intended to facilitate compo-
nent-based application building (i.e network-aware applications able to communi-
cate with an EHR database via a GEHR kernel server), or from the GOM itself
(mauve exchange definitions in FIGURE 4), if the intention is kernel-to-kernel
transmission of records in their GOM form. In the former case, the communication
is of record content fragments to and from applications, while in the latter, it is of
complete record extracts between servers. Both methods could be used to achieve
the logical movement of a record from one place to another, but clearly, kernel-to-
kernel communication is likely to be more efficient, and easier to ensure faithful
reconstruction at the receiver's end. For this reason, the semanitics of the movement
of EHR extracts is defined primarily in the GOM, not the API (although API func-
tions to do this are by no means out of the question).
Author: Thomas Beale Page 17 of 31 Date of Issue:3/Mar/03

Application Architectures GEHR System Architectures
Rev 2.1 draft B
5 Application Architectures

5.1 Standalone (1-tier) Applications
The standalone application is suitable for prototyping, testing, and small sites. It
consists of an application linked or integrated directly with the GEHR kernel, via
one of the available component integration mechanisms. Typical possibilities are
illustrated in FIGURE 5.

EHRs are stored in a local database, using technologies such as Btrieve, Forpro,
MS Access and so on. Transfer of EHRs is achieved by saving the EHR in GEHR
Exchange Format, and sending the resulting file by any available means, such as
email.

Advantages

• Cheap to implement.

• Useful for prototype development

• Applications developed using this model can be migrated directly to
larger environments.

Drawbacks

• Supports only a small number of users comfortably, as determined by the
database used.

• Performance is likely to be an issue for large records, especially for multi-
media items (assuming they can even be stored in the database) and for
complex queries.

• Sharing of EHRs with other sites is more or less “manual”, and ineffi-
cient.

• Database security is likely to be a problem.

• Likely to be platform specific.

Database

KERNEL

Application

COM

Database

KERNEL

Application

DLL

FIGURE 5 Standalone Applications
Date of Issue:3/Mar/03 Page 18 of 31 Author: Thomas Beale

© 1997-2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

GEHR System Architectures Application Architectures
Rev 2.1 draft B
5.2 Client/Server (2-tier) Applications
A more attractive architecture, even for smaller sites is client/server, as illustrated
in FIGURE 6. In this type of system, applications exist in a networked environ-
ment, and access data from a common database elsewhere on the network.

Persistence is provided by a database management system, in which persistent data
is accessed via a dedicated server process(es), which take care of sessions, (some)
security, journalling, transactions, prioritisation of requests, locking and many other
issues. Typical examples of client/server databases include the relational, such as
Oracle, Informix, Sybase, etc, and the object, such as Versant and ObjectStore.

Applications communicate with the database via a client library which is typically
linked into the client application; this client talks to the DBMS server, and often
provides a cache, and a separate level of transactioning. Depending on the type of
database, client/server communication will be in remote procedure calls (RPC),
OQL, SQL, or even straight sockets communication. HTTP may also be used as a
transport layer for high-level querying protocols.

Applications in such systems are built by linking with the GEHR kernel, again
using available component integration mechanisms.

Advantages

• Relatively easy to implement, given the number of available client/server
DBMS products available, and vast amount of experience with them.

• Many existing HCFs will have a DBMS already.

• Most RDBMS systems have built-in or complementary means of creating
visual applications quickly.

• Client/server systems are very reliable.

DBMS Client

DBMS

KERNEL

Application

network

Server

DBMS Client

KERNEL

Application

DBMS Client

KERNEL

Application

RPC/

FIGURE 6 Client/Server Database Architecture

COM DLL xxx
Author: Thomas Beale Page 19 of 31 Date of Issue:3/Mar/03

Application Architectures GEHR System Architectures
Rev 2.1 draft B
Drawbacks

• Difficult to scale up to wide area networks, and outside a single enterprise,
due to absence of naming and resource location services.

• Security may not be strong enough, since it exists only for session login
and possibly to prevent direct access to database disk volumes. Security
model may not correspond to the object model seen by application users
in relational systems.

• Performance may be limited by the amount of client/server traffic
required for clients to obtain the objects they require. Intelligent design of
the client is required to enable only sections of EHRs to be retrieved. In
the GEHR case, this is available due to the OSTORE object persistence
library.

• There are many other potential drawbacks in comparison with 3-tier sys-
tems, due to the tight coupling between client and server, including lim-
ited ability to mix databases, difficulties in legacy application integration,
and ability to support internet clients.

Despite the drawbacks above (which are mainly relevant to enterprises looking to
build large and flexible systems), the client/server approach is very appropriate for
many health care facilities, including hospitals.

One of the drawbacks with RDBMS client/server systems of the past is that the
monolithic construction of applications, often in a mixture of SQL, VB, and similar
languages has made for low maintainability. However, the GEHR kernel prevents
this, since client application developers are programming to a) the kernel interface,
and b) the OSTORE interface, which is a logical persistence interface; in both
cases, details of client/server transport, database locking, the network, underlying
programming languages are hidden.

In many cases, a GEHR-based client/server development would be a sensible step
toward a larger distributed system.

5.3 Distributed Object Applications (n-tier)
Distributed object systems (also called 3-tier or n-tier systems, due to the middle-
ware between user applications and information sources) provide a way of getting
past the limitations of traditional client/server systems, leading to systems with
multiple servers, and a layer of support services for naming, resource discovery,
and security. Most importantly, the information model presented to applications by
the middleware is shared by the enterprise (or further) and may not relate strongly
to the schemas or even type of databases behind the scenes.

An abstract model of distributed applications is illustrated in FIGURE 7, but it
should be understood that this understates the likely diversity and complexity of
any real-world n-tier environment.

Where does GEHR fit into this environment? The GEHR kernel provides both an
API and implementation of the API; in a distributed system, the API is exported to
the network, and client applications are programmed to use it in the same way as
for simple and 2-tier systems. However, in this case, the distibuted object environ-
Date of Issue:3/Mar/03 Page 20 of 31 Author: Thomas Beale

© 1997-2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

GEHR System Architectures Application Architectures
Rev 2.1 draft B
ment provides services which route client requests to appropriate servers, without
the client knowing the details.

In this situation, the GEHR kernel becomes the implementation of an EHR server,
and its API, as before, is the programming specification for client application
developers.

To Be Determined: it is expected that in the future the
GEHR API will align with specifications such as
CORBAmed COAS.

Advantages

• Applications are not directly tied to information servers, i.e. the GEHR
kernel. Instead, both the application and the kernel respect an agreed-upon
interface. This enables piece-wise development of systems, in which serv-
ers and applications can be replaced at will, without impinging on the rest
of the system.

• Any combination of implementation languages and database technologies
can potentially be used.

• Common interface specifications such as the CORBAmed proposals and
logical protocols such as HL7 v3 can be developed publicly and agreed by
a large number of stakeholders, resulting in a more representative inter-
face design.

Drawbacks

• N-tier distributed systems involve more specification and design work,
since the primary point of agreement is the distributed interface; this may
delay implementation efforts.

Application Application

GEHR KERNEL

Application

Object Client
Stub

DBMS Client

Demographic

DBMS Client
Server

DBMS
Server

Lexicon/Term

DBMS Client
Server

Broker

FIGURE 7 Distributed Object Architecture

Object Client
Stub

Object Client
Stub

Object Server
Stub

Object Server
Stub

Object Server
Stub
Author: Thomas Beale Page 21 of 31 Date of Issue:3/Mar/03

Application Architectures GEHR System Architectures
Rev 2.1 draft B
5.4 Web-based Systems
Transport
To Be Continued:

Security
To Be Continued:

XML
To Be Continued:
Date of Issue:3/Mar/03 Page 22 of 31 Author: Thomas Beale

© 1997-2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

GEHR System Architectures Databases
Rev 2.1 draft B
6 Databases

6.1 Simple Persistence
GEHR Exchange Format (GEF)
GEF is seen as an important base-level technology solution for persistence. The
idea is that rather than use a database, health records are stored as self-contained
files on the normal file system, allowing them to be handled like normal files. This
approach provides a default connectivity mechanism: such files may be attached to
email, archived on diskettes or FTP-ed in order to transmit them to another party.
All GEHR-compliant software properly implementing the GEF definition will be
able to read and manipulate health records transmitted in this way.

6.2 Simple Databases
To Be Continued:

6.3 Object Persistence
Object persistence mechanisms (OPMs) constitute the preferred way of storing
GEHR EHRs, because the model gives rise to rich content, characterised by com-
plex structures (such as hierarichies), numerous internal cross-references, multime-
dia elements. Remembering that our aim is seamless systems, it is preferable that
the pure object model of the GOM is translated directly to an object model of per-
sistence, as expressed in the ODMG-93 ODL or SQL3 schema languages.

The advantages of using an object persistence mechanism include:

• The OPMs understand objects as first-class entities - there is a direct map-
ping between OOPL and OPM concepts of class, object, attribute. This
enables OPMs to store networks of instances in a natural way, without the
semantic gap of mixed object/relational systems.

• An OPM schema is generally a simple transform of software class texts
(e.g. it can often be extracted nearly automatically from languages such as
C++ and Eiffel). The schema thus presents a minimal maintenance task,
as compared to a classical relational design, where the schema is a com-
plex artifact in its own right, requiring its own experts and long-term
maintenance.

• OPMs respond to queries, like other databases, as well as “navigational”
requests, corresponding to the programming language form obj.fea-
ture.feature...feature.

• OPMs generally store multimedia objects, whereas this facility may be the
exception with RDBMSs.

Object persistence can be implemented by object databases, by an object-relational
mapping engine used over an RDBMS, or by other categories of database, such as
the MUMPS system.

It is important to understand that relational databases can be used in two different
ways:
Author: Thomas Beale Page 23 of 31 Date of Issue:3/Mar/03

Databases GEHR System Architectures
Rev 2.1 draft B
1. As an object persistence mechanism, in which case there is a software
layer providing an object view, and a non-classical schema design which
can be extracted more or less directly from a class model such as the
GOM. This might be done via the Object/Relational modelling process,
for example.

2. The second way is to simply use the RDBMS in its classic form, with a
3rd-normal form schema, designed from an E/R view of the object model.

Products based on the first method can provide a very good object persistence
mechanism, whereas the more naive, second approach will always be difficult, and
a maintenance liability in the long term.

6.4 Object Databases
The most direct way to store objects is in an Object Database (ODB). These are
typically client/server products, and most conform to a standard known as ODMG-
93, created by the Object Database Management Group. This standard defines a
schema definition language (ODL), a query language (OQL) and bindings for vari-
ous languages.

Experience has shown ODBs to be fast, reliable, and a good fit for complex, multi-
media information such as EHRs. They are also far less maintenance than relational
databases.

see: www.matisse.
com

The first version of the Ocean GEHR system uses a library called OSTORE, as a
logical binding to the Matisse database. Bindings of OSTORE to other ODBs are
being developed.

6.5 Relational Database Management Systems
Relational storage of data is still the most common persistence solution to date.
While the use of relational storage with object-oriented software introduces prob-
lems, it is often preferred due to an existing investment and expertise in it.

New Database
As indicated above, the preferred approach is to use a fully object-capable rela-
tional solution, which will either mean a complete product, or an add-in layer and
set of tools. In this system, the relational schema will be produced by the tools and
will not resemble the standard 3rd-normal form schema used in E/R database
design.

To Be Continued:

Legacy Databases
In many hospital environments, legacy database systems exist. It is often tempting
to approach the task of migrating to a new EHR system by asking the question
“how do we integrate to the existing database?” This may be the wrong question in
many cases. Integration - i.e. forcing the new applications to use the existing data-
base (not just the RDBMS) to store their data - should only be attempted if the fol-
lowing is true:
Date of Issue:3/Mar/03 Page 24 of 31 Author: Thomas Beale

© 1997-2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

GEHR System Architectures Databases
Rev 2.1 draft B
• The existing system is in fact an “EHR system” or equivalent, i.e., the
data it stores largely corresponds to that of a notional EHR, in which case
it is likely to correspond to the core of a model like GEHR.

• The majority of the EHR information is in one logical database, i.e.
described by one schema.

If both conditions are true, a legacy approach such as the following can be used:

• Introduce new object applications and object persistence mechanism (may
use same RDBMS as legacy database).

• Engineer cross-load from legacy database to OPM, e.g. overnight, or in
real time as required. This is a relatively common operation (e.g. the
OSTORE persistence library provides this capability).

• At this stage the new applications can only be readers of the data coming
from the legacy system, via the OPM, but can of course create their own
new data as well. However, some update capacity may be possible, if for
example certain operations in the new system can fairly easily be turned
into SQL queries for the old system (e.g. by hardwiring in query strings
which are used as templates to be filled by different parameters each
time).

• Engineer read and update capability in the OPM for use by legacy appli-
cations. This typically requires supporting SQL queries which are based
on the legacy schema. In reality, most legacy systems will execute the
same few queries all the time, and a converter can be written relatively
painlessly.

• When all applications using a particular legacy system have effectively
been migrated to the OPM (if not completely rewritten), the legacy data-
base can be shutdown, and the newer applications can now have uncon-
strained write access to the OPM data.

Federated Systems
Many hospital databases are not EHR systems, but a collection of disparate special-
ist clinical systems (e.g. radiology, histopathology etc), a pharmacy system, an
administrative system for admission and discharge, and a PMI, or patient master
index. Each system has a different schema, and there may be duplicates of data
from some databases used by others; in some cases, it may not even be clear who is
the primary manager of such data.

Such cases represent a federation problem rather than a legacy database migration
one: the correct approach is to introduce a distributed middleware environment
(possibly via a component-based client/server approach) and devise ways of
accessing the legacy data with purpose-built interfaces between each legacy sys-
tem, and the middleware layer (e.g. by implementing mappings between the legacy
data and a well-defined CORBA IDL interface). In federated systems, access can
typically be engineered economically, but update (i.e. writing) is far harder to
implement. This is because the reverse mapping from objects to unrelated relational
structures is required, and is different for each target system; things are complicated
by different transaction models (or no transaction support at all), variants of SQL
and other details. In fact federated systems in which full writing capability has been
Author: Thomas Beale Page 25 of 31 Date of Issue:3/Mar/03

Databases GEHR System Architectures
Rev 2.1 draft B
achieved to the legacy databases have rarely been achieved, and there have been
many expensive failures.

A more appropriate route for federated legacy systems is to introduce a new object
EHR system which uses the legacy databases as information resources. For exam-
ple, a GUI screen in the new admission application might appear partly filled out
due a query to a legacy database, before the user enters any data. The final commit
will cause object structures containing both legacy and new information to be writ-
ten to the new object persistence mechanism.

6.6 Non-Relational DBMSs

6.6.1 MUMPS
To Be Continued:
Date of Issue:3/Mar/03 Page 26 of 31 Author: Thomas Beale

© 1997-2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

GEHR System Architectures System Architectures
Rev 2.1 draft B
7 System Architectures

7.1 Overview

7.1.1 Archetype Domain System
To Be Continued:

7.1.2 Terminology Server
To Be Continued:

7.1.3 Demographic Servers and Identification Systems
To Be Continued:

7.2 Small Clinic Architecture
To Be Continued:

7.3 Hospital Architecture
To Be Continued:

7.4 Distributed Architecture
To Be Continued:
Author: Thomas Beale Page 27 of 31 Date of Issue:3/Mar/03

System Architectures GEHR System Architectures
Rev 2.1 draft B
Date of Issue:3/Mar/03 Page 28 of 31 Author: Thomas Beale

© 1997-2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

GEHR System Architectures References
Rev 2.1 draft B
A References

A.1 Health IT
1. GEHR Project - Deliverable 19,20,24: GEHR Architecture

GEHR Project 30/6/1995

2. CORBAmed COAS specification V1.0 - OMG document corbamed/xx-xx-
xx

OMG Jan 2000

3. CORBAmed PIDS specificication - OMG document corbamed/98-02-29

OMG 1999

4. The Unified Service Action Model - documentation for the clinical area of
the HL7 Reference Information Model. Rev 2.4+

Regenstrief Institute for Health Care 2000

A.2 Software Engineering
5. Meyer, Bertrand - Object-oriented Software Construction, 2nd Ed.

Prentice Hall 1997

6. Walden, Kim and Nerson, Jean-Marc - Seamless Object-oriented Software
Architecture.

Prentice Hall 1994

7. Cattel R.G.G. (ed.) - The Object Database Standard: ODMG-93, Release 2.0

Morgan Kaufmann, 1997

8. Gamma E., Helm R., Johnson R., and Vlissides, J. - Design patterns of Re-
usable Object-oriented Software

Addison-Wesley 1995

A.3 Technology
9. Orfali, Harkey, Edwards - The Client Server Survival Guide (3rd Ed.)

Wiley 1999.
Authors: Thomas Beale Page 29 of 31 Date of Issue:3/Mar/03

© 1997, 1998, 1999 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

References GEHR System Architectures
Rev 2.1 draft B
Date of Issue:3/Mar/03 Page 30 of 31 Authors: Thomas Beale

© 1997, 1998, 1999 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

GEHR System Architectures
Rev 2.1 draft B

Author: Thomas Beale Page 31 of 31 Date of Issue:3/Mar/03

© 1997, 1998, 1999 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

END OF DOCUMENT

	GEHR System Architectures
	1 Introduction
	1.1 Purpose
	1.2 Browsing This Document
	1.3 Status
	1.3.1 Peer review

	2 Overview
	2.1 General Architectural Model
	2.2 Document Overview

	3 Philosophical Approach
	3.1 Abstract Model versus Format Prescription
	3.2 Record Representation
	3.3 Seamless Software Development

	4 Taxonomy of Deliverables
	4.1 Overview
	4.2 The Kernel
	4.3 The Kernel API
	4.4 Derived API Expressions
	4.5 Archetype Definitions
	4.6 Applications
	4.7 Database Schemas
	4.8 Exchange Definitions

	5 Application Architectures
	5.1 Standalone (1-tier) Applications
	Advantages
	Drawbacks

	5.2 Client/Server (2-tier) Applications
	Advantages
	Drawbacks

	5.3 Distributed Object Applications (n-tier)
	Advantages
	Drawbacks

	5.4 Web-based Systems
	Transport
	Security
	XML

	6 Databases
	6.1 Simple Persistence
	GEHR Exchange Format (GEF)

	6.2 Simple Databases
	6.3 Object Persistence
	6.4 Object Databases
	6.5 Relational Database Management Systems
	New Database
	Legacy Databases
	Federated Systems

	6.6 Non-Relational DBMSs
	6.6.1 MUMPS

	7 System Architectures
	7.1 Overview
	7.1.1 Archetype Domain System
	7.1.2 Terminology Server
	7.1.3 Demographic Servers and Identification Systems

	7.2 Small Clinic Architecture
	7.3 Hospital Architecture
	7.4 Distributed Architecture

	A References
	A.1 Health IT
	A.2 Software Engineering
	A.3 Technology

