
The GEHR Kernel Architecture
Rev 2.1 draft C
The GEHR Kernel Architecture

Authors: Thomas Beale

Revision: 2.1 draft C

Pages: 41
Author: Thomas Beale Page 1 of 41 Date of Issue:3/Mar/03

© 2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

© 2000
The GEHR Foundation

email: info@gehr.org web: www.gehr.org

The GEHR Kernel Architecture
Rev 2.1 draft C
Amendment Record

Issue Details Who Date

1.1 draft A Initial Writing. Content taken from archetype system
document.

T Beale 2 Aug 2000

2.1 Updated to include factory and archetype design,
native API.

T Beale 20 Aug 2000

2.1 draft B Changed some SHARED_ classes to PROXY_
classes.

T Beale 27 Sep 2000

2.1 draft C Update to kernel version 36 level - changed some
details of archetype processing.

T Beale 8 Nov 2000
Date of Issue:3/Mar/03 Page 2 of 41 Author: Thomas Beale

© 2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

The GEHR Kernel Architecture
Rev 2.1 draft C
Table of Contents

1 Introduction.. 5
1.1 Purpose...5
1.2 Audience ..5
1.3 Status..5

2 Overview ... 6
2.1 System Architecture...6
2.2 Application Architecture..6

3 Sessions and Security..11
3.1 System Architecture...11
3.2 Software Architecture ..12

4 Demographic Interface.. 13
4.1 System Architecture...13
4.2 Software Architecture ..14

5 Term Server Interface ... 15
5.1 System Architecture...15
5.2 Software Architecture ..15

6 Constructing EHRs With Archetypes 17
6.1 System Architecture...17
6.2 Software Architecture ..19
6.2.1 Overview..19
6.2.2 Factories...19
6.3 Issues and limitations...27
6.3.1 Chaining by Archetype Id..27
6.3.2 Id Matching..27
6.3.3 Default Archetype Choices..27

7 Archetype-governed Content Construction 29
7.1 Software Architecture ..29
7.2 Scenarios ..29
7.2.1 Content Construction ...29

8 Archetype Parsing.. 33

9 Persistence .. 35

10 Import/Export .. 37
10.1 XML...37
10.2 CORBA..37

11 User Interface ... 39
Author: Thomas Beale Page 3 of 41 Date of Issue:3/Mar/03

© 2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

The GEHR Kernel Architecture
Rev 2.1 draft C
Date of Issue:3/Mar/03 Page 4 of 41 Author: Thomas Beale

© 2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

The GEHR Kernel Architecture Introduction
Rev 2.1 draft C
1 Introduction

1.1 Purpose
This document describes the architecture of the GEHR kernel, in terms of class models, exported
interfaces, additional facilities and archetype implementation details. It is intended as a guide to the
design intention and programmatic interfaces of the kernel. Note however that only the native inter-
face is described here. Interfaces such as COM and CORBA are detailed in the OCEAN GEHR-com-
pliant Kernel Application Programmer’s Interface document.

1.2 Audience
The primary users of this document are:

GEHR kernel developers: this document describes the design and implementation decisions
taken in the current version of the kernel.

GEHR-based application and system developers: the native API is described.

1.3 Status
This document is under construction. Known omissions or questions are indicated in the text with
paragraphs like the following:

To Be Determined: indicating not yet resolved

To Be Continued: indicating more work required

Reviewers are invited to comment on these paragraphs as well as the main content.
Author: Thomas Beale Page 5 of 41 Date of Issue:3/Mar/03

Overview The GEHR Kernel Architecture
Rev 2.1 draft C
2 Overview

2.1 System Architecture
Because GEHR proposes an information model from which software artifacts can be derived, numer-
ous architectural possibilities are available, undoubtedly including some unforeseen by the original
authors of GEHR. The aim of this document is therefore to describe the most likely architectural pos-
sibilities. While the details may be quite different, all GEHR-based systems consist of the following
elements:

• User Applications, consisting of:

- An application specific part, typically a GUI interface.
- The GEHR kernel.
- A client for a persistence mechanism (database).

• Archetype Initialiser application, which converts XML archetypes to internal form for
GEHR applications to use.

• Demographic Manager application, which converts information from the demographic
server to internal form for GEHR applications to use.

• A database, containing repositories for:

- EHRs created/modified/viewed by applications.
- Locally used GEHR archetypes.
- Locally created GEHR archetype XML documents, where these exist.

• Terminology server(s), which provide access to well-known term sets such as UMLS,
ICPC and so on. The simplest version of this might be a small local application serving
terms from a file of locally defined terms; a more sophisticated version might be an imple-
mentation of the CORBAmed TQS specification.

• Demographic server, providing identification of person and organisational entities. At its
most minimal form, this might be a simple local database; the most sophisticated version
might be an implementation of the CORBAmed PIDS specification.

• Archetype domain server, providing access to the GEHR archetype domain system.

FIGURE 1 illustrates these elements.

2.2 Application Architecture
The software architecture of GEHR applications is illustrated in FIGURE 2. A GEHR kernel applica-
tion inherits from two important classes: GEHR_APPLICATION and *_DB_APPLICATION, where the
latter is one of the concrete descendants of the OSTORE class DB_APPLICATION.

GEHR_APPLICATION provides access to shared services, such as the kernel session, term services
and demographic server, as well as some basic services, including event logging and configuration
file access.

Using the OSTORE class simply provides the application - in particular, the EHR_FACTORY - access
to database services, via a number of self-contained interfaces. These interfaces form the upper layer
of the OSTORE library, and are implemented by bindings to various databases, which are inter-
changeable.
Date of Issue:3/Mar/03 Page 6 of 41 Author: Thomas Beale

The GEHR Kernel Architecture Overview
Rev 2.1 draft C
External services visible to GEHR_APPLICATION are shown as being connected by classes named
PROXY_*. In test systems where the external services are incorporated in the main application,
PROXY_* classes are implemented with the Eiffel once routine; in multi-process systems, these
classes use an IPC (inter-process communication) mechanism, such as EiffelNet, if in Eiffel, or
CORBA or COM, or even TCP/IP socket communication. The outer dashed box marks the notional
separation of processes in larger systems.

Archetype
Editor

K
E

R
N

E
L

X
M

L
pa

rs
er

QA
Process

Online
ID

Systems

Health Care Facility

KERNEL

XML

EHR DB

<content>

<value: 74 mg>
<name: xxxx>

</content>
<protocol>

<group>
<value>

<name:xxxx>
<value:xxxx>

</value>
</group>

</protocol>

<content>

<value: 74 mg>
<name: xxxx>

</content>
<protocol>

<group>
<value>

<name:xxxx>
<value:xxxx>

</value>
</group>

</protocol>

<content>

<value: 74 mg>
<name: xxxx>

</content>
<protocol>

<group>
<value>

<name:xxxx>
<value:xxxx>

</value>
</group>

</protocol>

parser KERNEL

EHR
GUI application

Local XML
Archetype DB

Archetype
Initialiser

Documents
EHR System

Local
Archetype
Domain
Server

Archetype
Domain
Server

Archetype

KERNEL

DEMOGRAPHIC
_MANAGER

EHRs

Online
Terminology

Systems

Local
Term

Server

Local
Security
Server

Online
Security

Infrastructure?

Demographic
Server

FIGURE 1 GEHR System Architecture

Prescribing
Server

Online
Prescribing

Systems

updateARCHETYPEs

KERNEL

QUERY
engine

query results
Author: Thomas Beale Page 7 of 41 Date of Issue:3/Mar/03

Overview The GEHR Kernel Architecture
Rev 2.1 draft C
Applications connect to the kernel via the KERNEL_SESSION class, the KERNEL root class, and via
other classes exposed through the API (illustrated in the abstract as class “aa”, “bb”, ... “xx”, “yy”,
“zz” in the diagram). The dashed box marking the kernel boundary corresponds to the kernel API vis-
ible to client programmers.
Date of Issue:3/Mar/03 Page 8 of 41 Author: Thomas Beale

KERNEL

demographic_manager

kernelAPPLICATION

SHARED_
ARCHETYPE_
MANAGER

PROXY_DEMOGRAPHIC_
MANAGER

PROXY_TERM_
SERVER

ARCHETYPE
_MANAGER

DEMOGRAPHIC
_MANAGER

TERM_SERVER

SHARED_KERNEL_
SESSION

archetype_

term_server
(id:STRING)

KERNEL_
SESSIONkernel_

session

FIGURE 2 General GEHR Application Structure

GEHR_
APPLICATION

XXX_DB

KERNEL
APPLICATION

SECURITY
_SERVER

xx
yy

zzaa
bb

cc

manager

???

media

0..*

Overview The GEHR Kernel Architecture
Rev 2.1 draft C
Date of Issue:3/Mar/03 Page 10 of 41 Author: Thomas Beale

The GEHR Kernel Architecture Sessions and Security
Rev 2.1 draft C
3 Sessions and Security

3.1 System Architecture
To Be Determined: this section under construction

EHR DB

KERNEL

EHR
GUI application

EHR System

EHR
objects

Health Care Facility

Online
security
Systems

Security
Server

FIGURE 3 GEHR Security System
Author: Thomas Beale Page 11 of 41 Date of Issue:3/Mar/03

Sessions and Security The GEHR Kernel Architecture
Rev 2.1 draft C
3.2 Software Architecture
To Be Determined: this section under construction

KERNEL_SESSION

active_user: INTEGER
ehr_source_id: STRING
hcf: STRING
lowest_access_user: INTEGER

active_user: INTEGER
add_user (a_user_id: STRING; a_user_name: STRING;
an_access_level: INTEGER; a_security_token: STRING; a_pin:
INTEGER)
has_user (a_pin: INTEGER): BOOLEAN
has_user_id (a_user_id: STRING): BOOLEAN
lowest_access_level: INTEGER
lowest_access_user: INTEGER
maximum_access_level: INTEGER
remove_user (a_pin: INTEGER)
set_active_user (a_pin: INTEGER)
user (a_pin: INTEGER): KERNEL_SESSION_USER
valid_login (a_user_id: STRING; an_access_level: INTEGER;
a_security_token: STRING): BOOLEAN

KERNEL_SESSION_USER

access_level: INTEGER
demographic_details: PARTY
pin: INTEGER
security_token: STRING
user_id: STRING
user_name: STRING

EHR_FACTORY

users: HASH_TABLE
[.., INTEGER]

ehr_context

kernel_session

FIGURE 4 Kernel Cluster
Date of Issue:3/Mar/03 Page 12 of 41 Author: Thomas Beale

The GEHR Kernel Architecture Demographic Interface
Rev 2.1 draft C
4 Demographic Interface

4.1 System Architecture
In dealing with demographic information, the underlying assumption of the GEHR kernel architec-
ture is that there will usually be an existing demographic server or service, such as a hospital PMI
(patient master index) or a small database at a GP clinic. Other services might exist as well, such as
the distributed online CORBAmed PIDS (Party Identification Service). In general, nothing can be
assumed about these services by a generic component such as the GEHR kernel.

However, as described in Versioning of Demographic Information on page 23 of the The GEHR
Object Model Architecture, the kernel needs access to snapshots of demographic information for ver-
sioning purposes, and to guarantee that record extracts are sensible.

In order to deal with this problem, the architecture shown in FIGURE 5 is used.

The existing demographic server, interface to an online demographic information is shown on the
right hand side. The Demographic Manager application is used to import snapshots of demographic
information from the server. This will occur on two occasions:

• When changes are being made to the patient’s EHR, and demographic transactions need to
be added to represent the demographic entities referenced in the changes.

• When changes occur in the PARTY records in the server, the relevant demographic transac-
tions in all EHRs should be synchronised. This requires a publish/subscribe interface
between the Demographic Server and the Demographic Manager.

Typically the conversion carried out by the Demographic Manager will follow the scheme: relational
-> XML instance -> GEHR VERSIONED_TRANSACTION update.

FIGURE 5 Demographic Architecture

EHR DB

KERNEL

EHR
Server

GEHR System

KERNEL

DEMOGRAPHIC
_MANAGER

EHRs

DEMOGRAPHIC
 DB

DEMOGRAPHIC
SERVER

Archetype DB

3. update
demographic
transactions

Demographic
Archetypes

2. snapshot
1. update
request

(e.g. XML) online
demographic

servicespublish/
subscribe
Author: Thomas Beale Page 13 of 41 Date of Issue:3/Mar/03

Demographic Interface The GEHR Kernel Architecture
Rev 2.1 draft C
4.2 Software Architecture
Demographic Manager illstrates the software architecture of the demographic manager. In a productin
system, the demographic manager would be a separate process; in test systems or small systems, it
can be incorporated into the main application.

DEMOGRAPHIC_MANAGER

has_party (key: STRING):
BOOLEAN
is_valid: BOOLEAN
party (key: STRING): PARTY
put_party (an_id: STRING)

PARTY

details: EHR_CONTENT

key: STRING
make (a_details:
EHR_CONTENT)

items:

FIGURE 6 Demographic Manager

PROXY_DEMOGRAPHIC_
MANAGER

demographic
_manager REP_CLIENT

(any kernel class)
Date of Issue:3/Mar/03 Page 14 of 41 Author: Thomas Beale

The GEHR Kernel Architecture Term Server Interface
Rev 2.1 draft C
5 Term Server Interface

5.1 System Architecture

5.2 Software Architecture
Author: Thomas Beale Page 15 of 41 Date of Issue:3/Mar/03

Term Server Interface The GEHR Kernel Architecture
Rev 2.1 draft C
Date of Issue:3/Mar/03 Page 16 of 41 Author: Thomas Beale

The GEHR Kernel Architecture Constructing EHRs With Archetypes
Rev 2.1 draft C
6 Constructing EHRs With Archetypes

6.1 System Architecture
FIGURE 7 illustrates an operational EHR system.

Archetype documents are authored offline, by the GEHR Foundation, national health institutions,
local health care facilities and software vendors. They are accepted into the Archetype Domain Sys-
tem according to a defined process, and become available via Archetype Domain Servers, which are
essentially intelligent file or document servers.

In an EHR system, there may be several GEHR applications, each of which requires a set of arche-
types specific to its purpose, for example, diabetes, or a GP’s general purpose application. The set of
archetypes is defined by a “clinical concept/archetype equivalence table”, which matches clinical
concepts such as “blood pressure”, “blood pressure with protocol”, “prescription”, “diabetic sum-
mary” and so on, with actual archetype names such as “au-dhac.cont.bp.v2” (Australian Depart-
ment of Health & Aged Care Blood Pressure clinical content archetype version 2) or
“gehr.cont.bp.v1” (GEHR simple blood pressure clinical content archetype, version 1).

To Be Determined: these archetype names are invented for now - arche-
type naming has not yet been decided

This system allows applications to refer to archetypes using their logical concept name, rather than
hardwiring in actual archetype names.

A further advantage of the equivalence table is that it can be used by an archetype initialiser applica-
tion to know in advance which archetypes will be required by a given application. By traversing the
list of archetype names in the table, the initialiser can request each archetype from the local domain
server, and for those which are found, parse the XML into kernel archetype object structures, which
are stored into the Archetype database. The archetype initialiser is shown above as a separate applica-
tion, but it could just as easily be a component of each application. One advantage of a separate appli-
cation is that only one software entity has to be replaced if modifications to the XML parser are made.

The Archetype database contains the results of parsing: instances of the classes in the archetype clus-
ter of the kernel. Their purpose is twofold: to act as builder/controller objects during the construction
of EHR content, and to supply a content default content “template”, enabling applications to instantly
display something, which in many cases would be only slightly modified to arrive at the content
required by the user. For example, the default content for a blood pressure need only have values
inserted to create the desired result; a prescription would have values inserted, and possibly some
optional items deleted.

Finally, EHR content is created when an application creating the relevant content factory (which acts
as the current build context), and calling a content creation feature with a clinical concept name (as
found in the equivalence table) as an argument. The content factory will then request the
ARCHETYPE_MANAGER class to retrieve the named archetype object, which will in turn install a copy of
the default content object into the current build context. The application will continue to make calls to
the content factory in order to modify the content as required by the user, with each call being medi-
ated by the content archetype. Attempts to make invalid modifications will fail. Eventually, the fin-
ished content item will be written into the current transaction, and the transaction committed to the
EHR database.

The above architecture allows the Archetype Initialiser to be written in any language, since communi-
cation of archetype objects is via the database; most databases are language neutral, so the only
Author: Thomas Beale Page 17 of 41 Date of Issue:3/Mar/03

EHR DB

KERNEL

EHR
GUI application

etype
able

tem

p Environment

EHR
objects
FIGURE 7 Archetypes in an EHR system

KERNEL

XML

<content>

<value: 74 mg>
<name: xxxx>

</content>
<protocol>

<group>
<value>

<name:xxxx>
<value:xxxx>

</value>
</group>

</protocol>

<content>

<value: 74 mg>
<name: xxxx>

</content>
<protocol>

<group>
<value>

<name:xxxx>
<value:xxxx>

</value>
</group>

</protocol>

<content>

<value: 74 mg>
<name: xxxx>

</content>
<protocol>

<group>
<value>

<name:xxxx>
<value:xxxx>

</value>
</group>

</protocol>

parser

Local XML Archetype Archetype DB

concept / arch
equivalence tArchetype

Initialiser

Archetype
Editor

Documents
EHR Sys

EHR Ap
Archetype
Domain
Server

K
E

R
N

E
L

X
M

L
pa

rs
er

clinical

Local
Archetype
Domain
Server

XML
archetypes

archetype
objects

Archetype
ids

XML
archetypes

Archetype
Domain
Server

Health Care Facility

The GEHR Kernel Architecture Constructing EHRs With Archetypes
Rev 2.1 draft C
requirement is that both the Initialiser and the application understand the database schema in the same
way, which is achieved by assuming a common standard.

6.2 Software Architecture

6.2.1 Overview
This section deals with archetypes which have already been parsed and are available to the EHR sys-
tem in native form. Archetype parsing and the archetype initialiser application are dealt with in
Archetype Parsing on page 33.

The process of creating content with the kernel is designed to be very simple for the application pro-
grammer, but of course this mandates some sophistication behind the scenes. Archetypes add a fur-
ther element of complexity, so we will explore the content construction process in some detail.

The technical problem of building content can be described as follows:

• Application requests to create a new transaction version, and is able to specify at least some
details of the type of content required.

• Archetypes for each level of content - transaction (EHR_CONTENT), organiser
(ORGANISER_ROOT) and content (DEFINITION_CONTENT) - need to be specified. Note that
higher level archetypes may specify legal archetypes at lower levels, using a match pattern
for names.

• The archetypes are retrieved from the object database.

• The application may need to be able to choose piece-wise which lower archetypes are to be
used from the range of possible ones; an example is for content under SOAP orgqnisers. In
other cases, there is a default which should be followed without intervention from the appli-
cation; for example, dempgraphic content.

• Default content is created from the archetype, enabling the application to start with a sensi-
ble initial state, and reducing the work for the application (and thus, the user).

• The application then makes changes to the default content, with each change being checked
in advance by the archetype, to ensure it is legal. Illegal changes are prevented before they
can be made.

• When all changes are finished, the created content can be committed to a transaction, and
thence to the database.

In terms of design, this process has been separated into two levels, namely:

1. Archetype retrieval, choosing and chaining of sub-archetypes, committal.

2. For a single archetype, content creation, modification and validity checking

This section deals with the first, while the section Archetype-governed Content Construction below
deals with the detailed processing of archetypes.

6.2.2 Factories

To understand how the GEHR factories work, let us begin with a simple (yet sufficiently detailed)
example of realistic EHR content, so that it is clear what content we want to create. Consider FIG-
URE 8 and FIGURE 9 together. These show the default and populated content of an EHR_CONTENT
object, in a hierarchically exploded instance form, in which class and attribute names are in the famil-
iar fonts from the UML class models in this document. With a couple of exceptions due to readability
Author: Thomas Beale Page 19 of 41 Date of Issue:3/Mar/03

Constructing EHRs With Archetypes The GEHR Kernel Architecture
Rev 2.1 draft C
concerns, the attribute and class names correspond exactly to GOM classes and attributes. (Note that
the format here might be quite different fromthat used in a user-friendly GUI).

EHR_CONTENT (gehr.trans.patient-core-demographics.v1)
concept: “patient demographics”
context:DEFINITION_CONTENT: (gehr.cont.demographic-snapshot.v1)

concept = “demographic snapshot”
proposition: HIERARCHICAL_PROPOSITION

name = “demographic snapshot” (Gehr_clin_1.0::0200)
 item: HG

values: HV; “demographic server id” = “default”
HV; “last changed” = 01/01/1800

groups:HG; “address” (Gehr_clin_1.0::0005)
values: HV; “street number” (Gehr_clin_1.0::0240) = “default”

HV; “street name” (Gehr_clin_1.0::0241) = "default"
HV; “locality” (Gehr_clin_1.0::0242) = "default"
HV; “county” (Gehr_clin_1.0::0243) = "default"
HV; “postcode” (Gehr_clin_1.0::0244) = "default"
HV; “country” (Gehr_clin_1.0::0245) = "default"

content:ORGANISER_ROOT (gehr.org.patient-core-demographics.v1)
concept:“patient core demographics”
organisers:ORGANISER:

name: “core demographics” (Gehr_clin_1.0::0238)
content: DEFINITION_CONTENT (gehr arch id = gehr.cont.identity-path.v1)

concept = “identity path”
proposition: SIMPLE_PROPOSITION

name = “identity path”
 item: HG
 values: HV; “path” (Gehr_clin_1.0::0260) = "name"

ORGANISER:
name: “identity” (Gehr_clin_1.0::0236)
content: DEFINITION_CONTENT: (gehr arch id = gehr.cont.patient-identity.v1)

concept = “patient identity”
proposition: HIERARCHICAL_PROPOSITION

name = “patient identity” (Gehr_clin_1.0::0209)
 item: HG

values: HV; “name” (Gehr_clin_1.0::0218) = “unknown”
HV; “date of birth” (Gehr_clin_1.0::0214) = 01/01/1800
HV; “place of birth” (Gehr_clin_1.0::0215) = “unknown”
HV; “sex” (Gehr_clin_1.0::0216) = “not specified” (Gehr_clin_1.0::0254)

ORGANISER
name: “contacts” (Gehr_clin_1.0::0237)
content:DEFINITION_CONTENT: (gehr arch id = gehr.cont.party-contacts.v1)

concept = “party contacts”
proposition: HIERARCHICAL_PROPOSITION

name = “party contacts” (Gehr_clin_1.0::0210)
 item: HG

groups:HG; “address” (Gehr_clin_1.0::0005)
values: HV; “street number” (Gehr_clin_1.0::0240) = “default”

HV; “street name” (Gehr_clin_1.0::0241) = "default"
HV; “locality” (Gehr_clin_1.0::0242) = "default"
HV; “county” (Gehr_clin_1.0::0243) = "default"
HV; “postcode” (Gehr_clin_1.0::0244) = "default"
HV; “country” (Gehr_clin_1.0::0245) = "default"

FIGURE 8 Archetype-generated Default Content
Date of Issue:3/Mar/03 Page 20 of 41 Author: Thomas Beale

The GEHR Kernel Architecture Constructing EHRs With Archetypes
Rev 2.1 draft C
The intention is to construct the content shown in FIGURE 9, in this case, the content of a patient
demographic snapshot transaction. Note that there is content at all three levels at which GEHR arche-
types can be applied, namely, EHR_CONTENT, ORGANISER_ROOT and DEFINITION_CONTENT; in each
case the actual archetype name that was used is shown in red.

Stepping back slightly in time, FIGURE 8 shows us the default content, created by the relevant arche-
type objects, ready to have actual values populated. (In this example, the difference between the
default and actual is simply that values have been inserted, but, in general the structure could also
have been changed, for example certain address fields added or removed. We deal with such com-
plexity in the following section).

Now, in order to arrive at the point where the content of FIGURE 8 exists, the relevant archetypes
need to have been chosen and retrieved, and default content creating routines called.

The starting point for constructing EHR content is the factory, which performs the retrieval of arche-
types, default content creation, and committal of transactions to the EHR. The factory class hierarchy
is illustrated in FIGURE 10.

The important points to note here are:

• All descendants of ARCHETYPED_FACTORY have attributes for:

- sub_archetype_id_patterns: a table of {attribute name, archetype pattern id} pairs.
In this context, “attribute name” refers to an attribute in the GOM type being
archetyped. For example, in EHR_CONTENT, there are two attributes, content and
context, which both point to objects which are archetyped. Thus,
EHR_CONTENT_FACTORY.sub_archetype_id_patterns is a table of the form
{{“/content”, “???\.org\.???”}, {“|context”, “???\.cont\.???”}}. The
patterns may be quite complex, and can include disjoint archetype names, as in
“gehr\.org\.party-identity\..*|gehr\.org\.demographic\..*\..*”.

- selected_sub_archetypes: a set of actual archetype ids, again keyed by attribute
name: this is the result of a choosing process by either the application, or by some
automatic means. Each selected archetype id is stored in a table, keyed by its
runtime path.

- sub_factories: a set of the factory objects created once archetypes have been
chosen. For example, if the archetype gehr.cont.demographic-snapshot.v1 was chosen for
EHR_CONTENT.context, then a DEFINITION_CONTENT_FACTORY would appear in this
table, keyed by “context”.

• ARCHETYPED_FACTORY descendants all have a reference to an ARCHETYPE object, whose type
co-varies with the factory appropriately.

• ARCHETYPE objects contain a reference to an ARCHETYPED object (once create_default has
been called), again with dynamic types covarying. For example, an A_ORGANISER_ROOT.tar-
get points to a ORGANISER_ROOT object.

We will now follow the sequence of calls to factories with illustrations of the state of th revelant
objects over time.

The first step is to create a EHR_CONTENT_FACTORY, and retrieve an archetype thus:

local

ef:EHR_CONTENT_FACTORY

do

create ef

ef.retrieve_archetype (data_factory.create_term_text_from_expansion ("patient
demographics", Gehr_clinical_ts))
Author: Thomas Beale Page 21 of 41 Date of Issue:3/Mar/03

Constructing EHRs With Archetypes The GEHR Kernel Architecture
Rev 2.1 draft C
EHR_CONTENT (gehr.trans.patient-core-demographics.v1)
concept: “patient demographics”
context:DEFINITION_CONTENT: (gehr arch id = gehr.cont.demographic-snapshot.v1)

concept = “demographic snapshot”
proposition: HIERARCHICAL_PROPOSITION

name = “demographic snapshot” (Gehr_clin_1.0::0200)
 item: HG

values: HV; “demographic server id” = “server2.mnc.com.au”
HV; “last changed” = 13/08/2000

groups:HG; “address” (Gehr_clin_1.0::0005)
values: HV; “street number” (Gehr_clin_1.0::0240) = “22”

HV; “street name” (Gehr_clin_1.0::0241) = "Holden St"
HV; “locality” (Gehr_clin_1.0::0242) = "Mooloolah"
HV; “county” (Gehr_clin_1.0::0243) = "Qld"
HV; “postcode” (Gehr_clin_1.0::0244) = "4553"
HV; “country” (Gehr_clin_1.0::0245) = "Australia"

content:ORGANISER_ROOT (gehr.org.patient-core-demographics.v1)
concept:“patient core demographics”
organisers:ORGANISER:

name: “core demographics” (Gehr_clin_1.0::0238)
content: DEFINITION_CONTENT (gehr arch id = gehr.cont.identity-path.v1)

concept = “identity path”
proposition: SIMPLE_PROPOSITION

name = “identity path”
 item: HG
 values: HV; “path” (Gehr_clin_1.0::0260) = "/"core demographics"/"iden-

tity"|"patient identity"|"name""
ORGANISER:

name: “identity” (Gehr_clin_1.0::0236)
content: DEFINITION_CONTENT: (gehr arch id = gehr.cont.patient-identity.v1)

concept = “patient identity”
proposition: HIERARCHICAL_PROPOSITION

name = “patient identity” (Gehr_clin_1.0::0209)
 item: HG

values: HV; “name” (Gehr_clin_1.0::0218) = “Sarah McMahon”
HV; “date of birth” (Gehr_clin_1.0::0214) = 03/04/1959
HV; “place of birth” (Gehr_clin_1.0::0215) = “Ballarat”
HV; “sex” (Gehr_clin_1.0::0216) = “female” (Gehr_clin_1.0::0251)

ORGANISER
name: “contacts” (Gehr_clin_1.0::0237)
content:DEFINITION_CONTENT: (gehr arch id = gehr.cont.party-contacts.v1)

concept = “party contacts”
proposition: HIERARCHICAL_PROPOSITION

name = “party contacts” (Gehr_clin_1.0::0210)
 item: HG

groups:HG; “address” (Gehr_clin_1.0::0005)
values: HV; “street number” (Gehr_clin_1.0::0240) = “142”

HV; “street name” (Gehr_clin_1.0::0241) = "Platypus Lane"
HV; “locality” (Gehr_clin_1.0::0242) = "Mooloolah"
HV; “county” (Gehr_clin_1.0::0243) = "Qld"
HV; “postcode” (Gehr_clin_1.0::0244) = "4553"
HV; “country” (Gehr_clin_1.0::0245) = "Australia"

FIGURE 9 Populated Content
Date of Issue:3/Mar/03 Page 22 of 41 Author: Thomas Beale

The GEHR Kernel Architecture Constructing EHRs With Archetypes
Rev 2.1 draft C
The archetype is identified as “patient demographics”; it is already known in the system that this con-
cept name is mapped to the GEHR archetype id "gehr.trans.patient-core-demographics.v1". The
result of these calls is shown in FIGURE 11.

Not only has the archetype object (A_EHR_CONTENT) been retrieved, its valid sub-archetype ids have
been used to populate the table sub_archetype_id_patterns. The meaning of the first entry in this table
is: valid archetypes for building the content at EHR_CONTENT.content must match the pattern
"gehr\.org\.patient-core-demographics\.v1". Note that this pattern has no variability - only the
ORGANISER archetype name "gehr.org.patient-core-demographics.v1" will match. The pseudo-path
“/content” is used because the actual path cannot be known until the archetype is chosen (the path
can then be determined from its concept; we do however know from the GOM that it will be an
ORGANISER_ROOT, hence the organiser-style “/”).

The next step is to select sub-archetypes for each sub-archetyped attribute, by proposing valid arche-
type ids, thus:

{ARCHETYPED_FACTORY}
selected_sub_archetypes: TABLE [LIST [STRING], STRING]
sub_archetype_id_patterns: TABLE [STRING, STRING]
item_anchor: ARCHETYPED

EHR_FACTORY

{BASIC_FACTORY}

EHR_CONTENT
_FACTORY

ORGANISER
_FACTORY

DEFINITION_CONTENT
_FACTORY

TRANSACTION
_FACTORY

FIGURE 10 Factory Classes

sub_

TABLE [.., STRING]

ARCHETYPE
concept: TERM_TEXT
gehr_identifier:STRING

ARCHETYPED
concept: TERM_TEXT
gehr_archetype_id:STRING

archetype

target

FACTORY_CONTEXT

factories

items:

EHR_
CONTENT_
FACTORY

FIGURE 11 EHR_CONTENT Factory Creation

A_EHR_
CONTENT

archetype

sub_archetype_id_patterns:

<“|context”, "gehr\.cont\.demographic-snapshot\.v1">
<“/content”, "gehr\.org\.patient-core-demographics\.v1">

"gehr.trans.patient-
core-demographics.v1"
Author: Thomas Beale Page 23 of 41 Date of Issue:3/Mar/03

Constructing EHRs With Archetypes The GEHR Kernel Architecture
Rev 2.1 draft C
ef.select_sub_archetype("gehr.org.patient-core-demographics.v1", "/content", "")

ef.select_sub_archetype("gehr.cont.demographic-snapshot.v1", "|context", "")

ef.install_sub_archetypes

Here, archetypes have been selected for content and context. The call install_sub_archetypes causes
the relevant factory objects to be created, and their archetypes to be retrieved, as illustrated in FIG-
URE 12.

Once again, we need to specify and install archetypes for content, the next level down, thus:

local

of:ORGANISER_FACTORY

do

...

of ?= ef.sub_factories("/core demographics")

of.select_sub_archetype("gehr.cont.identity-path.v1", "/core demographics|content",
"/%"core demographics%"")

of.select_sub_archetype("gehr.cont.patient-identity.v1", "/core
demographics/identity|content", "/%"core demographics%"/%"identity%"")

of.select_sub_archetype("gehr.cont.party-contacts.v1", "/core
demographics/contacts|content", "/%"core demographics%"/%"contacts%"")

of.install_sub_archetypes

These calls lead us to the situation shown in FIGURE 13. Now we have all the factory objects we
need, chained together by their sub_archetype_factories reference tables, and the archetype objects
have all been retrieved, so at this point we are ready to start creating content. This is done with a sin-
gle call to the EHR_CONTENT_FACTORY, as follows:

ef.create_default

A cascade of creation is now set in train, which causes the construction of a complete set of default
object structures, whose contents were shown in FIGURE 8. The object view is shown in FIGURE
14. The creation takes place recusrsively, with each factory calling create_default on its own arche-
type objects, then calling create_default on the sub-archetype factories, which continue the pattern.
At this point, all content objects, along with associations shown in solid lines on FIGURE 14 are in
place. When create_default returns for all sub-archetype factories, each factory calls
create_default_finalise on its archetype, and this continues back up the chain. These calls enable the
archetypes to “glue” together the targets of the archetypes of sub-archetype factories, to the target of
their own archetype - the links shown as dashed lines.

The actual details of content creation of each content object, and its underlying data structures, for
example DEFINITION_CONTENT and HIERARCHICAL_PROPOSITION and associated classes is dealt
with in detail in the following section.

EHR_
CONTENT_
FACTORY

ORGANISER_
FACTORY

A_EHR_
CONTENT

A_ORG_
ROOT

A_
ORGANISER

A_
ORGANISER

FIGURE 12 After calling install_sub_archetypes on EHR_FACTORY

archetype

sub_archetype_factories
<“/content”, X>

archetype

"gehr.trans.patient-
core-demographics.v1"

"gehr.org.patient-
core-demographics.v1"

organiserscontent

<“|context”, X>

sub_archetype_id_patterns:

<“/core demographics/identity\content”, "gehr\.cont\.patient-identity\.v1">
<“/core demographics\content", "gehr\.cont\.identity-path\.v1">

<“/core demographics/contacts\content”, "gehr.cont.party-contacts.v1">
Date of Issue:3/Mar/03 Page 24 of 41 Author: Thomas Beale

The GEHR Kernel Architecture Constructing EHRs With Archetypes
Rev 2.1 draft C
At this point, around ten calls have enabled the creation of a default structure and content for a com-
plete patient demographic snapshot. A number of calls are now needed to populate the structure.
There are various possibilities for this, since both the ORGANISER and XXX_CONTENT classes provide
an interface designed to support different flavours of application. The following set of calls is one
possibility for getting from the default content to fully populated content illustrated in FIGURE 9.

local

ef:EHR_CONTENT_FACTORY

of:ORGANISER_FACTORY

dcf:DEFINITION_CONTENT_FACTORY

hp:HIERARCHICAL_PROPOSITION

a_date:DATE_IMPL

do

...

dcf ?= of.sub_factory("/%"core demographics%"|%"identity path%"")

hp := dcf.item_proposition

hp.value_go_to_name("path")

hp.value_replace_data_value(data_factory.create_plain_text("/%"core
demographics%"/%"identity%"|%"patient identity%"|%"name%""))

dcf ?= of.sub_factory("/%"core demographics%"/%"identity%"|%"patient identity%"")

hp := dcf.item_proposition

hp.value_go_to_name("name")

hp.value_replace_data_value(data_factory.create_plain_text("Sarah McMahon"))

hp.value_go_to_name("date of birth")

create a_date.make_from_string("04/03/1959")

hp.value_replace_data_value(a_date)

hp.value_go_to_name("place of birth")

hp.value_replace_data_value(data_factory.create_plain_text("Melbourne"))

DEF_
CONTENT_
FACTORY

A_DEF_
CONTENT

A_DEF_
CONTENT

A_DEF_
CONTENT

FIGURE 13 After calling install_sub_archetypes on ORGANISER_FACTORY

DEF_
CONTENT_
FACTORY

DEF_
CONTENT_
FACTORY

EHR_
CONTENT_
FACTORY

ORGANISER_
FACTORY

A_EHR_
CONTENT

A_ORG_
ROOT

A_
ORGANISER

A_
ORGANISER

archetype

sub_archetype_factories
<“/content”, X>

archetype

"gehr.trans.patient-
core-demographics.v1"

"gehr.org.patient-
core-demographics.v1"

organiserscontent

<“|context”, X>

sub_archetype_factories:

<“/core demographics/identity|content”, X>
<“/core demographics|content", X>

<“/core demographics/contacts|content”, X>

"gehr.cont.identity-path.v1”

"gehr.cont.patient-identity.v1”

"gehr.cont.party-contacts.v1”

content
content

content

archetype

archetype

archetype
Author: Thomas Beale Page 25 of 41 Date of Issue:3/Mar/03

Constructing EHRs With Archetypes The GEHR Kernel Architecture
Rev 2.1 draft C
hp.value_go_to_name("sex")

hp.value_replace_data_value(data_factory.create_term_text("female",
Gehr_clinical_ts))

dcf ?= of.sub_factory("/%"core demographics%"/%"contacts%"|%"party contacts%"")

hp := dcf.item_proposition

hp.set_cursor_to_path("|%"party contacts%"|%"address%"")

hp.value_go_to_name("street number")

hp.value_replace_data_value(data_factory.create_plain_text("142"))

hp.value_go_to_name("street name")

hp.value_replace_data_value(data_factory.create_plain_text("Platypus Lane"))

hp.value_go_to_name("locality")

hp.value_replace_data_value(data_factory.create_plain_text("Mooloolah"))

hp.value_go_to_name("county")

hp.value_replace_data_value(data_factory.create_plain_text("Queensland"))

hp.value_go_to_name("postcode")

hp.value_replace_data_value(data_factory.create_plain_text("4553"))

hp.value_go_to_name("country")

hp.value_replace_data_value(data_factory.create_plain_text("Australia"))

All content construction in the GEHR kernel functions according to the general scheme just
described, with more or less complexity depending upon the particular archetypes involved.

EHR_
CONTENT

ORGANISER_
ROOT

DEFINITION_
CONTENT

ORGANISER

ORGANISER

DEFINITION_
CONTENT

DEFINITION_
CONTENT

FIGURE 14 Content Creation

DEF_
CONTENT_
FACTORY

A_DEF_
CONTENT

A_DEF_
CONTENT

A_DEF_
CONTENT

DEF_
CONTENT_
FACTORY

DEF_
CONTENT_
FACTORY

EHR_
CONTENT_
FACTORY

ORGANISER_
FACTORY

A_EHR_
CONTENT

A_ORG_
ROOT

A_
ORGANISER

A_
ORGANISER

archetype

sub_archetype_factories
<“/content”, X>

archetype

"gehr.trans.patient-
core-demographics.v1"

"gehr.org.patient-
core-demographics.v1"

organiserscontent

<“|context”, X>

sub_archetype_factories:

<“/core demographics/identity|content”, X>
<“/core demographics|content", X>

<“/core demographics/contacts|content”, X>

"gehr.cont.identity-path.v1”

"gehr.cont.patient-identity.v1”

"gehr.cont.party-contacts.v1”

content
content

content

archetype

archetype

archetype

target target

content

contentorganisers
content

target

target

target

content
Date of Issue:3/Mar/03 Page 26 of 41 Author: Thomas Beale

The GEHR Kernel Architecture Constructing EHRs With Archetypes
Rev 2.1 draft C
6.3 Issues and limitations

6.3.1 Chaining by Archetype Id
One limitation with the above is that archetypes are chained by virtue of sub-archetype id patterns in
each archetype. It could be argued that in fact rather than ids, concept names should be used to do
chaining, since the archetype equivalence table is used by the application to decide what particular
archetypes to use. Chaining by ids circumvents this table. The contrary argument is that the designers
of archetypes are quite clear and precise about what sub-archetypes should be used, and do not want
to compromise the integrity of their design by a badly configured equivalence table. Currently the lat-
ter argument seems to hold more weight, since informational integrity and quality is probably more
important than configurability.

6.3.2 Id Matching
In any case, archetype id matching poses another technical problem: it requires that the archetype
naming system be designed such that lexical name matching be congruent to the intended clinical
matches. For example, the archetype id “nhs.cont.drug-medication-order.v5” matches the pat-
tern “.*\.cont\..*medication-order.*\..*”, but equivalent archetypes from other medical sys-
tems such as homeopathy may not. The simple way of dealing with this is to use patterns with disjoint
matches, using the ‘|’ regular expression element. However it is unclear what the impact on require-
ments for archetype identification is of using ids to match clinically equivalent archetypes.

6.3.3 Default Archetype Choices
In the above example, the factory function select_sub_archetype was used to choose the ids of sub-
archetypes. However, in the example case, clearly there was no choice intended - the pattern was
fixed. Currently the factory model does not detect this specifically, but it probably should be pro-
vided, since it would be convenient to avoid having to make such fixed choices, and go straight to
content creation.
Author: Thomas Beale Page 27 of 41 Date of Issue:3/Mar/03

Constructing EHRs With Archetypes The GEHR Kernel Architecture
Rev 2.1 draft C
Date of Issue:3/Mar/03 Page 28 of 41 Author: Thomas Beale

The GEHR Kernel Architecture Archetype-governed Content Construction
Rev 2.1 draft C
7 Archetype-governed Content Construction

7.1 Software Architecture
FIGURE 15 illustrates the class model for the kernel archetype classes. The salient features are as fol-
lows.

The archetype class model is an almost complete homologue of the GOM, i.e. each GOM class has an
archetype class equivalent, which is designed to express the possible constraints on instances of the
GOM class. Archetype classes are named by prepending A_ before the class name of their corre-
sponding GOM class. Thus the archetype classes, A_EHR_CONTENT, A_ORGANISER, and
A_DEFINITION_CONTENT define the constraints for the corresponding classes in the GOM, namely
EHR_CONTENT, ORGANISER and DEFINITION_CONTENT. A_DEFINITION_CONTENT is subtyped to
A_PREDICATE_CONTENT, A_SUBJECTIVE_CONTENT etc, in the same way as the corresponding
GOM classes. A_EHR_CONTENT and A_ORGANISER each have a feature which lists allowed arche-
types of the next lower down type.

To Be Determined: this may be removed in the future in favour of
exclusive use of composite archetypes

The classes A_HIERARCHICAL_XX define constraints for their namesakes in the content cluster of the
GOM. Things to note in particular:

• A_HIERARCHICAL_GROUP has values and groups attributes, defining legal structure of the
content under each node; the attributes new_group and new_value refer to objects of type
A_HIERARCHICAL_GROUP and A_HIERARCHICAL_VALUE, repectively, which define the
constraints on new HIERARCHICAL_GROUPs or HIERARCHICAL_VALUEs added to the
HIERARCHICAL_GROUP represented by the current A_HIERARCHICAL_GROUP node.

• Value constraints are defined by the attribute type_value_constraints in
A_HIERARCHICAL_VALUE, and the class A_VALUE_CONSTRAINT and descendants.

• Each created structure must know the precise name of the archetype it was created from.

7.2 Scenarios

7.2.1 Content Construction
A slightly simplified process of content construction is illustrated in FIGURE 16.

The sequence of events is as follows:

• An application class requires an item of content to be created, such as a blood pressure. To
start the process, it creates a OBSERVATION_CONTENT_FACTORY (since blood pressure will
normally occur as a measured value in an EHR), which provides a build context in which
content under construction can be assembled, and the relevant archetype can be attached.

• It calls OBSERVATION_CONTENT_FACTORY.create_content, passing a clinical concept as an
argument;

• The clinical concept is used as a key into the equivalent table to find an archetype identifier;
using this, the archetype is retrieved from the archetype database (causing the archetype
objects to be created in the kernel program space). The retreived archetype - of subtype
A_OBSERVATION_CONTENT in this example - is attached to
OBSERVATION_CONTENT_FACTORY.archetype, making it available to the build process.
Author: Thomas Beale Page 29 of 41 Date of Issue:3/Mar/03

NTENT
N_CONTENT
HIERARCHICAL_PROPOSITION

ontent: DEFINITION_CONTENT)

A_HIERARCHICAL_PROPOSITION

form: INTEGER

A_HIERARCHICAL_GROUP

is_root: BOOLEAN

ED_LIST [..],

0..*

new_value
groups:ARRAYED_LIST [..],

new_group

1..1

root

1..1

proposition

UNITS

QUANTIFIABLE

unit

default_

UNITS_ITEM

UNIT_REFERENCE

 items:LIST[..]

value
{ARCHETYPE}
gehr_identifier: STRING
concept: PLAIN_TEXT

is_valid_item (x: G1_ANY): BOOLEAN
key: STRING
make (id: STRING; a_concept: PLAIN_TEXT)
create_default (a_context: ANY_CONTEXT)

A_DEFINITION_CO
target: DEFINITIO
target_proposition:

attach_content (a_c

values:ARRAY

A_HIERARCHICAL_ITEM
context_required: BOOLEAN
default_name: PLAIN_TEXT
maximum_occurrences: INTEGER
minimum_occurrences: INTEGER
structural_id: STRING
valid_names: A_PLAIN_TEXT

A_HIERARCHICAL_VALUE

is_root: BOOLEAN

A_DATA_VALUE

valid_value (a_value:

DATA_VALUE): BOOLEAN

0..*

A_QUANTITY

value_maximum,

value_minimum: REAL_REF

precision_maximum,

precision_minimum:

INTEGER_REF

type_value_constraints:
HASH_TABLE [.., STRING]

0..*

A_ORGANISER
maximum_occurrences: INTEGER
minimum_occurrences: INTEGER
name: PLAIN_TEXT
organiser_archetype_id_pattern:
STRING
content_archetype_id_pattern:
STRING

attach_content (an_org: ORGANISER)

A_EHR_CONTENT

attach_content (a_trans:
EHR_CONTENT)
content_archetype_id_pattern:
STRING
context_archetype_id_pattern:
STRING
is_persistent: BOOLEAN

0..*

content_archetypes:
LINKED_SET[..]content A_ORGANISER_ROOT

attach_content (a_content:
DEFINITION_CONTENT)

0..*

organisers:ARRAYED_LIST [..],
parent

FIGURE 15 Class Model for Archetypes

context

1

0..1

A_UNITS
property_pattern: STRING
units_pattern: STRING

units
A_PLAIN_TEXT

meaning: STRING

value_pattern: STRING

A_TERM_TEXT

term_set_pattern: STRING

terms: LIST[TERM_TEXT]

The GEHR Kernel Architecture Archetype-governed Content Construction
Rev 2.1 draft C
• Initial content is created when the content factory calls
A_OBSERVATION_CONTENT.create_default.

• The application code can now access the variables content:OBSERVATION_CONTENT and
proposition:HIERARCHICAL_PROPOSITION in the factory object. The former is the root
object of the content tree being created, and the latter is its actual data which may vary,
according to the different GOM forms available, as follows:

- SIMPLE_PROPOSITION
- LIST_PROPOSITION
- HIERARCHICAL_PROPOSITION
- TIME_SERIES
- REGULAR_TIME_SERIES
- TABLE_PROPOSITION
- MATRIX_PROPOSITION

- etc

These interfaces allow the application to build the content according to its requirements. All subse-
quent modification of content is mediated behind the scenes by archetype objects (shaded area in
lower left of FIGURE 16). This is illustrated in detail in FIGURE 17.

The effect of A_DEFINITION_CONTENT.create_default is to recursively visit each object in the
archetype structure, creating a corresponding default content object on the way, and setting its
archetype_item reference back to the relevant archetype object.

It is via this link that further calls to HIERARCHICAL_PROPOSITION (or one of its descendants) can
determine valid changes after the default creation, or after retrieval of an existing piece of content.
Preconditions on content factory functions are used to determine whether each call would be valid
according to the attached archetype.

ARCHETYPE
_MGR REP_CLIENT

Archetype DB
Server

retrieve_by_key
(equiv_table.item(a_concept))

archetype := get_archetype_for_concept
(a_concept)

* get_obj(....)

archetype

_CONTENT

A_OBSERVATION

_FACTORY

app
class

create_content
(a_concept)

make

create_default

phen_content ?=content

FIGURE 16 Content construction with archetype

make

(release factory)

OBSERVATION

hier_prop ?=proposition

_CONTENT
Author: Thomas Beale Page 31 of 41 Date of Issue:3/Mar/03

A
uthor: T

hom
as B

eale
P

age 32 of 41
D

ate of Issue:3/M
ar/03

R
ev 2.1 draft C

G

HV
t_value)

item(Current)

HG
hg.make(default_name)

HP = HIERARCHICAL_PROPOSITION
HG = HIERARCHICAL_GROUP, etc
A_HG
(groups)

FIGURE 17 Default Creation by Content Archetype

_CONTENT
_FACTORY

DEFINITION A_DEFINITION
A_HP A_HG A_HV

DEFINITION

HP

H

create_default create_proposition
(a_name)

target_proposition := make(a_name, ...)

target_content := make(gehr_id, target_proposition)

create_default
(target_proposition) set_archetype_item(Current)

create hg.make(default_name)

create_default(hp)

hg.set_archetype_item(Current)

cursor.extend_child(hg)

(values)(root)

*create_defaut(hp)

*create_defaut(hp)

create hv.make(default_name, defaul

hv.set_archetype_

cursor.extend_value(hv)

create

sam
e as forFrom this point on,

the application object
makes calls to change

the content from its
default state, and then

commits it.

_CONTENT

_CONTENT

The GEHR Kernel Architecture Archetype Parsing
Rev 2.1 draft C
8 Archetype Parsing

FIGURE 18 illustrates the parsing of an archetype instance document by the archetype initialiser. The
sequence of events is as follows:

• The initialiser process reads an archetype name from the equivalence table.

• It checks if any archetype with the name already exists in the Archetype database.

• If not, it then communicates with the nearest archetype domain server, which retrieves an
archetype document locally or obtains it from another server.

• It then parses the document and writes the resulting objects into the Archetype database.
To Be Determined: error processing here - what if no archetype docu-

ment found; what if found but parsing fails; what if domain server
down; what if network down (preventing contact with other domain
servers)

In general, XML archetype documents will be used to generate Eiffel archetype structures, whose job
it is to create EHR transaction, organiser and content structures. The Eiffel archetype structures are
made persistent, allowing them to be re-used directly in their object form.

ARCHETYPE
_INITIALISER REP_CLIENT

ARCHETYPE
_MAPPER

no; xml_str := get_archetype(arch_name)

an_archetype := map(xml_str)

file system
interface

has_archetype(arch_name)?

read_file

Database
Server

* mt_find_obj(...)

store(an_archetype) * mt_put_obj(...)

ARCHETYPE
_DOMAIN

FIGURE 18 Archetype Parsing

_SERVER

archetype

(arch_name + “.xml”)

XML_SCHEMA
_PARSER

parse(xml_str)

* ???

A_XXX make * ???
* ???

etc
etc
Author: Thomas Beale Page 33 of 41 Date of Issue:3/Mar/03

Archetype Parsing The GEHR Kernel Architecture
Rev 2.1 draft C
Date of Issue:3/Mar/03 Page 34 of 41 Author: Thomas Beale

The GEHR Kernel Architecture Persistence
Rev 2.1 draft C
9 Persistence
Author: Thomas Beale Page 35 of 41 Date of Issue:3/Mar/03

Persistence The GEHR Kernel Architecture
Rev 2.1 draft C
Date of Issue:3/Mar/03 Page 36 of 41 Author: Thomas Beale

The GEHR Kernel Architecture Import/Export
Rev 2.1 draft C
10 Import/Export

10.1 XML

10.2 CORBA
Author: Thomas Beale Page 37 of 41 Date of Issue:3/Mar/03

Import/Export The GEHR Kernel Architecture
Rev 2.1 draft C
Date of Issue:3/Mar/03 Page 38 of 41 Author: Thomas Beale

The GEHR Kernel Architecture User Interface
Rev 2.1 draft C
11 User Interface
Author: Thomas Beale Page 39 of 41 Date of Issue:3/Mar/03

User Interface The GEHR Kernel Architecture
Rev 2.1 draft C
Date of Issue:3/Mar/03 Page 40 of 41 Author: Thomas Beale

The GEHR Kernel Architecture
Rev 2.1 draft C

Author: Thomas Beale Page 41 of 41 Date of Issue:3/Mar/03

© 2000 The GEHR Foundation
email: info@gehr.org web: www.gehr.org

END OF DOCUMENT

	The GEHR Kernel Architecture
	1 Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Status

	2 Overview
	2.1 System Architecture
	2.2 Application Architecture

	3 Sessions and Security
	3.1 System Architecture
	3.2 Software Architecture

	4 Demographic Interface
	4.1 System Architecture
	4.2 Software Architecture

	5 Term Server Interface
	5.1 System Architecture
	5.2 Software Architecture

	6 Constructing EHRs With Archetypes
	6.1 System Architecture
	6.2 Software Architecture
	6.2.1 Overview
	6.2.2 Factories

	6.3 Issues and limitations
	6.3.1 Chaining by Archetype Id
	6.3.2 Id Matching
	6.3.3 Default Archetype Choices

	7 Archetype-governed Content Construction
	7.1 Software Architecture
	7.2 Scenarios
	7.2.1 Content Construction

	8 Archetype Parsing
	9 Persistence
	10 Import/Export
	10.1 XML
	10.2 CORBA

	11 User Interface

