
Release 1 .0 .2
The openEHR Archetype Model

Archetype Object Model

Keywords: EHR, ADL, health records, archetypes, constraints

Editors: T Bealea

a. Ocean Informatics

Revision: 2.0.2 Pages: 54 Date of issue: 20 Nov 2008

Status: STABLE

Data Structures
Data Types

DemographicEHR

Security

EHR Extract

Archetype OM

Support

Common

Integration

Composition openEHR Archetype Profile

Template OM

ADL
© 2004-2008 The openEHR Foundation.

The openEHR Foundation is an independent, non-profit community, facilitating the sharing of
health records by consumers and clinicians via open-source, standards-based implementations.

Founding
Chairman

David Ingram, Professor of Health Informatics,
CHIME, University College London

Founding
Members

Dr P Schloeffel, Dr S Heard, Dr D Kalra, D Lloyd, T Beale

email: info@openEHR.org web: http://www.openEHR.org

http://www.openEHR.org

Archetype Object Model
Rev 2.0.2
Copyright Notice

© Copyright openEHR Foundation 2001 - 2008
All Rights Reserved

1. This document is protected by copyright and/or database right throughout the
world and is owned by the openEHR Foundation.

2. You may read and print the document for private, non-commercial use.
3. You may use this document (in whole or in part) for the purposes of making

presentations and education, so long as such purposes are non-commercial and
are designed to comment on, further the goals of, or inform third parties
about, openEHR.

4. You must not alter, modify, add to or delete anything from the document you
use (except as is permitted in paragraphs 2 and 3 above).

5. You shall, in any use of this document, include an acknowledgement in the form:
“© Copyright openEHR Foundation 2001-2008. All rights reserved. www.openEHR.org”

6. This document is being provided as a service to the academic community and on
a non-commercial basis. Accordingly, to the fullest extent permitted under
applicable law, the openEHR Foundation accepts no liability and offers no
warranties in relation to the materials and documentation and their content.

7. If you wish to commercialise, license, sell, distribute, use or otherwise copy
the materials and documents on this site other than as provided for in
paragraphs 1 to 6 above, you must comply with the terms and conditions of the
openEHR Free Commercial Use Licence, or enter into a separate written agreement
with openEHR Foundation covering such activities. The terms and conditions of
the openEHR Free Commercial Use Licence can be found at
http://www.openehr.org/free_commercial_use.htm
Date of Issue: 20 Nov 2008 Page 2 of 54 Editors:T Beale

© 2004-2008 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model
Rev 2.0.2
Amendment Record

Issue Details Raiser Completed

R E L E A S E 1.0.2

2.0.2 SPEC-257. Correct minor typos and clarify text. Correct
reversed definitions of is_bag and is_set in CARDINALITY class.

SPEC-251. Allow both pattern and interval constraint on Dura-
tion in Archetypes. Loosen C_DURATION invariant.

C Ma,
R Chen,
T Cook
S Heard

20 Nov 2008

R E L E A S E 1.0.1

2.0.1 CR-000200. Correct Release 1.0 typographical errors. Table for
missed class ASSERTION_VARIABLE added. Assumed_value asser-
tions corrected; standard_representation function corrected.
Added missed adl_version, concept rename from CR-000153.
CR-000216: Allow mixture of W, D etc in ISO8601 Duration
(deviation from standard).
CR-000219: Use constants instead of literals to refer to terminol-
ogy in RM.
CR-000232. Relax validity invariant on CONSTRAINT_REF.
CR-000233: Define semantics for occurrences on
ARCHETYPE_INTERNAL_REF.
CR-000234: Correct functional semantics of AOM constraint
model package.
CR-000245: Allow term bindings to paths in archetypes.

D Lloyd,
P Pazos,
R Chen,

C Ma
S Heard

R Chen

R Chen
K Atalag

T Beale

S Heard

20 Mar 2007

R E L E A S E 1.0

2.0 CR-000153. Synchronise ADL and AOM attribute naming.
CR-000178. Add Template Object Model to AM. Text changes
only.
CR-000167. Add AUTHORED_RESOURCE class. Remove descrip-
tion package to resource package in Common IM.

T Beale
T Beale

T Beale

10 Nov 2005

R E L E A S E 0.96

0.6 CR-000134. Correct numerous documentation errors in AOM.
Including cut and paste error in TRANSLATION_DETAILS class in
Archetype package. Corrected hyperlinks in Section 2.3.
CR-000142. Update ADL grammar to support assumed values.
Changed C_PRIMITIVE and C_DOMAIN_TYPE.
CR-000146: Alterations to am.archetype.description from CEN
MetaKnow
CR-000138. Archetype-level assertions.
CR-000157. Fix names of OPERATOR_KIND class attributes

D Lloyd

S Heard,
T Beale
D Kalra

T Beale
T Beale

20 Jun 2005

R E L E A S E 0.95

0.5.1 Corrected documentation error - return type of
ARCHETYPE_CONSTRAINT.has_path; add optionality markers to
Primitive types UML diagram. Removed erroneous aggregation
marker from ARCHETYPE_ONTOLOGY.parent_archetype and
ARCHETYPE_DESCRIPTION.parent_archetype.

D Lloyd 20 Jan 2005
Editors:T Beale Page 3 of 54 Date of Issue: 20 Nov 2008

© 2004-2008 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model
Rev 2.0.2
0.5 CR-000110. Update ADL document and create AOM document.
Includes detailed input and review from:

- DSTC

- CHIME, Uuniversity College London

- Ocean Informatics
Initial Writing. Taken from ADL document 1.2draft B.

T Beale

A Goodchild
Z Tun

T Austin
D Kalra
N Lea

D Lloyd
S Heard
T Beale

10 Nov 2004

Issue Details Raiser Completed
Date of Issue: 20 Nov 2008 Page 4 of 54 Editors:T Beale

© 2004-2008 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model
Rev 2.0.2
Trademarks

Microsoft is a trademark of the Microsoft Corporation
Editors:T Beale Page 5 of 54 Date of Issue: 20 Nov 2008

© 2004-2008 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model
Rev 2.0.2
1 Introduction.. 8
1.1 Purpose .. 8
1.2 Related Documents.. 8
1.3 Nomenclature .. 8
1.4 Status ... 8
1.5 Background.. 8
1.5.1 What is an Archetype? .. 8
1.5.2 Context .. 9
1.6 Tools .. 9
1.7 Changes from Previous Versions... 9
1.7.1 Version 0.6 to 2.0... 9

2 The Archetype Object Model.. 10
2.1 Design Background ... 10
2.2 Package Structure .. 10
2.3 Model Overview.. 11
2.3.1 Archetypes as Objects ... 11
2.3.2 The Archetype Ontology... 12
2.3.3 Archetype Specialisation... 13
2.3.4 Archetype Composition... 13

3 The Archetype Package... 14
3.1 Overview ... 14
3.2 Class Descriptions ... 15
3.2.1 ARCHETYPE Class.. 15
3.2.2 VALIDITY_KIND Class... 17

4 Constraint Model Package.. 18
4.1 Overview ... 18
4.2 Semantics... 18
4.2.1 All Node Types.. 18
4.2.2 Attribute Node Types .. 18
4.2.3 Object Node Types .. 20
4.2.4 Assertions .. 22
4.3 Class Definitions ... 23
4.3.1 ARCHETYPE_CONSTRAINT Class .. 23
4.3.2 C_ATTRIBUTE Class... 24
4.3.3 C_SINGLE_ATTRIBUTE Class... 24
4.3.4 C_MULTIPLE_ATTRIBUTE Class ... 24
4.3.5 CARDINALITY Class.. 25
4.3.6 C_OBJECT Class.. 26
4.3.7 C_DEFINED_OBJECT Class... 26
4.3.8 C_COMPLEX_OBJECT Class... 27
4.3.9 C_PRIMITIVE_OBJECT Class.. 28
4.3.10 C_DOMAIN_TYPE Class .. 28
4.3.11 C_REFERENCE_OBJECT Class ... 28
4.3.12 ARCHETYPE_SLOT Class.. 29
4.3.13 ARCHETYPE_INTERNAL_REF Class 29
4.3.14 CONSTRAINT_REF Class... 30
Date of Issue: 20 Nov 2008 Page 6 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model
Rev 2.0.2
5 The Assertion Package .. 31
5.1 Overview..31
5.2 Semantics ...31
5.3 Class Descriptions..32
5.3.1 ASSERTION Class..32
5.3.2 EXPR_ITEM Class..32
5.3.3 EXPR_LEAF Class ...33
5.3.4 EXPR_OPERATOR Class...33
5.3.5 EXPR_UNARY_OPERATOR Class...34
5.3.6 EXPR_BINARY_OPERATOR Class..34
5.3.7 ASSERTION_VARIABLE Class ..35
5.3.8 OPERATOR_KIND Class ...36

6 The Primitive Package... 38
6.1 Overview..38
6.2 Class Descriptions..39
6.2.1 C_PRIMITIVE Class...39
6.2.2 C_BOOLEAN Class..39
6.2.3 C_STRING Class...40
6.2.4 C_INTEGER Class..40
6.2.5 C_REAL Class...41
6.2.6 C_DATE Class...41
6.2.7 C_TIME Class ...42
6.2.8 C_DATE_TIME Class ...43
6.2.9 C_DURATION Class...46

7 Ontology Package .. 47
7.1 Overview..47
7.2 Semantics ...47
7.3 Class Descriptions..48
7.3.1 ARCHETYPE_ONTOLOGY Class ..48
7.3.2 ARCHETYPE_TERM Class ...50

A Domain-specific Extension Example.................................... 51
A.1 Overview..51
A.2 Scientific/Clinical Computing Types...51

B Using Archetypes with Diverse Reference Models.............. 52
B.1 Overview..52
B.2 Clinical Computing Use...52

C References... 53
Editors:T Beale Page 7 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Introduction Archetype Object Model
Rev 2.0.2
1 Introduction

1.1 Purpose
This document contains the definitive statement of archetype semantics, in the form of an object
model for archetypes. The model presented here can be used as a basis for building software that
processes archetypes, independent of their persistent representation; equally, it can be used to develop
the output side of parsers that process archetypes in a linguistic format, such as the openEHR Arche-
type Definition Language (ADL) [4], XML-instance and so on. As a specification, it can be treated as
an API for archetypes.

It is recommended that the openEHR ADL document [4] be read in conjunction with this document,
since it contains a detailed explanation of the semantics of archetypes, and many of the examples are
more obvious in ADL, regardless of whether ADL is actually used with the object model presented
here or not.

1.2 Related Documents
Prerequisite documents for reading this document include:

• The openEHR Architecture Overview
Related documents include:

• The openEHR Archetype Definition Language (ADL)
• The openEHR Archetype Profile (oAP)

1.3 Nomenclature
In this document, the term ‘attribute’ denotes any stored property of a type defined in an object
model, including primitive attributes and any kind of relationship such as an association or aggrega-
tion. XML ‘attributes’ are always referred to explicitly as ‘XML attributes’.

1.4 Status
This document is under development, and is published as a proposal for input to standards processes
and implementation works.

This document is available at http://svn.openehr.org/specification/TAGS/Release-
1.0.1/publishing/architecture/am/aom.pdf.

The latest version of this document can be found at http://svn.openehr.org/specifica-
tion/TRUNK/publishing/architecture/am/aom.pdf.

Blue text indicates sections under active development.

1.5 Background

1.5.1 What is an Archetype?
Archetypes are constraint-based models of domain entities, or what some might call “structured busi-
ness rules”. Each archetype describes configurations of data instances whose classes are described in
a reference model; the instance configurations are considered to be valid exemplars of a particular
Date of Issue: 20 Nov 2008 Page 8 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://svn.openehr.org/specification/TAGS/Release-1.0.1/publishing/architecture/am/aom.pdf
http://svn.openehr.org/specification/TAGS/Release-1.0.1/publishing/architecture/am/aom.pdf
http://svn.openehr.org/specification/TRUNK/publishing/architecture/am/aom.pdf
http://svn.openehr.org/specification/TRUNK/publishing/architecture/am/aom.pdf

Archetype Object Model Introduction
Rev 2.0.2
domain concept. Thus, in medicine, an archetype might be designed to constrain configurations of
instances of a simple node/arc information model, that express a “microbiology test result” or a
“physical examination”. Archetypes can be composed, specialised, and templated for local use. The
archetype concept has been described in detail by Beale [1], [2]. Most of the detailed formal seman-
tics are described in the openEHR Archetype Definition Language [4]. The openEHR archetype
framework is described in terms of Archetype Definitions and Principles [4] and an Archetype Sys-
tem [5].

1.5.2 Context
The object model described in this document relates to linguistic forms of archetypes as shown in
FIGURE 1. The model (upper right in the figure) is the object-oriented semantic equivalent of the
ADL the Archetype Definition Language BNF language definition, and, by extension, any formal
transformation of it. Instances of the model (lower right on the figure) are themselves archetypes, and
correspond one-to-one with archetype documents expressed in ADL or a related language.

1.6 Tools
Various tools exist for creating and processing archetypes. The openEHR tools are available in source
and binary form from the website (http://www.openEHR.org).

1.7 Changes from Previous Versions

1.7.1 Version 0.6 to 2.0
As part of the changes carried out to ADL version 1.3, the archetype object model specified here is
revised, also to version 2.0, to indicate that ADL and the AOM can be regarded as 100% synchro-
nised specifications.

• added a new attribute adl_version: String to the ARCHETYPE class;
• changed name of ARCHETYPE.concept_code attribute to concept.

FIGURE 1 Relationship of Archetype Object Model to Archetype Languages

Archetype
doc parser

arch: top_part main
main: id_decl descr_decl def_decl
id_decl: SYM_ARCHETYPE arch_id
arch_id: ...

archetype language
definition (EBNF)

Archetype object

Archetype

language/syntax
conformance

instance/type
conformance

Archetype

XML-schema
IDL
other concrete
formalisms

direct
mapping

model

(object form)
Editors:T Beale Page 9 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://www.openEHR.org

The Archetype Object Model Archetype Object Model
Rev 2.0.2
2 The Archetype Object Model

2.1 Design Background
An underpinning principle of openEHR is the use of archetypes and templates, which are formal
models of domain content, and are used to control data structure and content during creation, modifi-
catoin and querying. The elements of this architecture are twofold.

• The openEHR Reference Model (RM), defining the structure and semantics of information
in terms of information models (IMs). The RM models correspond to the ISP RM/ODP
information viewpoint, and define the data of openEHR EHR systems. The information
model is designed to be invariant in the long term, to minimise the need for software and
schema updates.

• The openEHR Archetype Model (AM), defining the structure and semantics of archetypes
and templates. The AM consists of the archetype language definition language (ADL), the
Archetype Object Model (AOM) and the openEHR Archetype profile (oAP).

The purpose of ADL is to provide an abstract syntax for textually expressing archetypes and tem-
plates. The AOM defines the object model equivalent, in terms of a UML model. It is a generic
model, meaning that it can be used to express archetypes for any reference model in a standard way.
ADL and the AOM are brought together in an ADL parser: a tool which can read ADL archetype
texts, and whose parse-tree (resulting in-memory object representation) is instances of the AOM. The
TOM defines the object model of templates, which are themselves used to put archetypes together
into local information structures, usually corresponding to screen forms.

The purpose of the openEHR Archetype Profile is to define which classes and attributes of the
openEHR RM can be sensibly archetyped, and to provide custom archetype classes.

2.2 Package Structure
The openEHR Archetype Object Model is defined as the package am.archetype, as illustrated in
FIGURE 2. It is shown in the context of the openEHR am.archetype packages.

FIGURE 2 openehr.am.archetype Package

am

openehr_ template

archetype
constraint_model

ontology assertion

primitive

archetype_profile
Date of Issue: 20 Nov 2008 Page 10 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model The Archetype Object Model
Rev 2.0.2
2.3 Model Overview
The model described here is a pure object-oriented model that can be used with archetype parsers and
software that manipulates archetypes. It is independent of any particular linguistic expression of an
archetype, such as ADL or OWL, and can therefore be used with any kind of parser.

It is dependent on the openEHR Support model (assumed types and identifiers), as small number of
the openEHR Data types IM, and the AUTHORED_RESOURCE classes from the openEHR Common IM.

2.3.1 Archetypes as Objects
FIGURE 3 illustrates various processes that can be responsible for creating an archetype object struc-
ture, including parsing, database retrieval and GUI editing. A parsing process that would typically
turn a syntax expression of an archetype (ADL, XML, OWL) into an object one. The input file is con-
verted by a parser into an object parse tree, shown on the right of the figure, whose types are specified
in this document. Database retrieval will cause the reconstruction of an archetype in memory from a
structured data representation, such as relational data, object data or XML. Direct in-memory editing
by a user with a GUI archetype editor application will cause on-the-fly creation and destruction of
parts of an archetype during the editing session, which would eventually cause the archetype to be
stored in some form when the user decides to commit it.

After initial parsing, the in-memory representation is then validated by the semantic checker of the
ADL parser, which can verify numerous things, such as that term codes referenced in the definition
section are defined in the ontology section. It can also validate the classes and attributes mentioned in
the archetype against a specification for the relevant information model (e.g. in XMI or some equiva-
lent)

definition

ontology

constraint_

FIGURE 3 Archetype Parsing Process

→A

binding

C_complex_object

C_primitive_object →A

use_reference

archetype_slot

constraint_refkey

description

term_
binding

archetype

C_attribute (single)

C_attribute (container)

ONT
C

ONT
C

ADL
file

checker
semanticinformation

model
specification

syntax
checker

validity
report
Editors:T Beale Page 11 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Object Model Archetype Object Model
Rev 2.0.2
As shown in the figure, the definition part of the in-memory archetype consists of alternate layers of
object and attribute constrainer nodes, each containing the next level of nodes. In this document, the
word ‘attribute’ refers to any data property of a class, regardless of whether regarded as a ‘relation-
ship’ (i.e. association, aggregation, or composition) or ‘primitive’ (i.e. value) attribute in an object
model. At the leaves are primitive object constrainer nodes constraining primitive types such as
String, Integer etc. There are also nodes that represent internal references to other nodes, constraint
reference nodes that refer to a text constraint in the constraint binding part of the archetype ontology,
and archetype constraint nodes, which represent constraints on other archetypes allowed to appear at
a given point. The full list of concrete node types is as follows:

C_complex_object: any interior node representing a constraint on instances of some non-
primitive type, e.g. ENTRY, SECTION;

C_attribute: a node representing a constraint on an attribute (i.e. UML ‘relationship’ or
‘primitive attribute’) in an object type;

C_primitive_object: an node representing a constraint on a primitive (built-in) object type;
Archetype_internal_ref: a node that refers to a previously defined object node in the same

archetype. The reference is made using a path;
Constraint_ref: a node that refers to a constraint on (usually) a text or coded term entity, which

appears in the ontology section of the archetype, and in ADL, is referred to with an
“acNNNN” code. The constraint is expressed in terms of a query on an external entity,
usually a terminology or ontology;

Archetype_slot: a node whose statements define a constraint that determines which other
archetypes can appear at that point in the current archetype. It can be thought of like a
keyhole, into which few or many keys might fit, depending on how specific its shape is.
Logically it has the same semantics as a C_COMPLEX_OBJECT, except that the constraints are
expressed in another archetype, not the current one.

The typename nomenclature “C_complex_object”, “C_primitive_object”, “C_attribute” used here is
intended to be read as “constraint on xxxx”, i.e. a “C_complex_object” is a “constraint on a complex
object (defined by a complex reference model type)”. These typenames are used below in the formal
model.

2.3.2 The Archetype Ontology
There are no linguistic entities at all in the definition part of an archetype, with the possible exception
of constraints on text items which might have been defined in terms of regular expression patterns or
fixed strings. All linguistic entities are defined in the ontology part of the archetype, in such a way as
to allow them to be translated into other languages in convenient blocks. As described in the
openEHR ADL document, there are four major parts in an archetype ontology: term definitions, con-
straint definitions, term bindings and constraint bindings. The former two define the meanings of var-
ious terms and textual constraints which occur in the archetype; they are indexed with unique
identifiers which are used within the archetype definition body. The latter two ontology sections
describe the mappings of terms used internally to external terminologies. Due to the well-known
problems with terminologies (described in some detail in the openEHR ADL document, and also by
e.g. Rector [6] and others), mappings may be partial, incomplete, approximate, and occasionally,
exact.
Date of Issue: 20 Nov 2008 Page 12 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model The Archetype Object Model
Rev 2.0.2
2.3.3 Archetype Specialisation
Archetypes can be specialised. The formal rules of specialisation are described in the openEHR
Archetype Semantics document (forthcoming), but in essence are easy to understand. Briefly, an
archetype is considered a specialisation of another archetype if it mentions that archetype as its par-
ent, and only makes changes to its definition such that its constraints are ‘narrower’ than those of the
parent. Any data created via the use of the specialised archetype is thus conformant both to it and its
parent. This notion of specialisation corresponds to the idea of ‘substitubility’, applied to data.

Every archetype has a ‘specialisation depth’. Archetypes with no specialisation parent have depth 0,
and specialised archetypes add one level to their depth for each step down a hierarchy required to
reach them.

2.3.4 Archetype Composition
It the interests of re-use and clarity of modelling, archetypes can be composed to form larger struc-
tures semantically equivalent to a single large archetype. Composition allows two things to occur: for
archetypes to be defined according to natural ‘levels’ or encapsulations of information, and for the re-
use of smaller archetypes by a multitude of others. Archetype slots are the means of composition, and
are themselves defined in terms of constraints.
Editors:T Beale Page 13 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Package Archetype Object Model
Rev 2.0.2
3 The Archetype Package

3.1 Overview
The model of an archetype, illustrated in FIGURE 4, is straightforward at an abstract level, mimick-
ing the structure of an archetype document as defined in the openEHR Archetype Definition Lan-
guage (ADL) document. An archetype is a modelled as a particular kind of AUTHORED_RESOURCE, and
as such, includes descriptive meta-data, language information and revision history. The ARCHETYPE
class adds identifying information, a definition - expressed in terms of constraints on instances of an
object model, and an ontology. The archetype definition, the ‘main’ part of an archetype, is an

instance of a C_COMPLEX_OBJECT, which is to say, the root of the constraint structure of an archetype
always takes the form of a constraint on a non-primitive object type. The last section of an archetype,
the ontology, is represented by its own class, and is what allows the archetypes to be natural lan-
guage- and terminology-neutral.

A utility class, VALIDITY_KIND is also included in the Archetype package. This class contains one
integer attribute and three constant definitions, and is intended to be used as the type of any attribute
in this constraint model whose value is logically ‘mandatory’, ‘optional’, or ‘disallowed’. It is used in
this model in the classes C_Date, C_Time and C_Date_Time.

FIGURE 4 openehr.am.archetype Package

C_COMPLEX
_OBJECT

ARCHETYPE_

definition

1

ontology
ONTOLOGY1

archetype

constraint_model

ontology

ARCHETYPE
uid[0..1]: HIER_OBJECT_ID
archetype_id[1]: ARCHETYPE_ID
adl_version[0..1]: String
concept[1]: String
parent_archetype_id[0..1]:
ARCHETYPE_ID
version: String
previous_version: String
concept_name: String
short_concept_name: String
physical_paths: Set<String>
logical_paths(lang: String): Set<String>
specialisation_depth: Integer
is_specialised: Boolean
is_valid: Boolean
node_ids_valid: Boolean
internal_references_valid: Boolean
constraint_references_valid: Boolean

openehr_archetype

VALIDITY_KIND
const mandatory: Integer = 1001
const optional: Integer = 1002
const disallowed: Integer = 1003
value: Integer

ASSERTION
invariants

*

assertion

AUTHORED_RESOURCE
(rm.common.resource)

_profile
Date of Issue: 20 Nov 2008 Page 14 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model The Archetype Package
Rev 2.0.2
3.2 Class Descriptions

3.2.1 ARCHETYPE Class

CLASS ARCHETYPE

Purpose
Archetype equivalent to ARCHETYPED class in Common reference model.
Defines semantics of identfication, lifecycle, versioning, composition and spe-
cialisation.

Inherit AUTHORED_RESOURCE

Attributes Signature Meaning

0..1 adl_version: String ADL version if archteype was read in from an
ADL sharable archetype.

1..1 archetype_id: ARCHETYPE_ID Multi-axial identifier of this archetype in
archetype space.

0..1 uid: HIER_OBJECT_ID OID identifier of this archetype.

1..1
concept: String The normative meaning of the archetype as a

whole, expressed as a local archetype code,
typically “at0000”.

0..1 parent_archetype_id:
ARCHETYPE_ID

Identifier of the specialisation parent of this
archetype.

1..1 definition:
C_COMPLEX_OBJECT

Root node of this archetype

1..1 ontology:
ARCHETYPE_ONTOLOGY

The ontology of the archetype.

0..1

invariants:
Set<ASSERTION>

Invariant statements about this object. State-
ments are expressed in first order predicate
logic, and usually refer to at least two
attributes.

Functions Signature Meaning

1..1 version: String Version of this archetype, extracted from id.

0..1 previous_version: String Version of predecessor archetype of this arche-
type, if any.

1..1 short_concept_name: String The short concept name of the archetype
extracted from the archetype_id.

concept_name
(a_lang: String): String

The concept name of the archetype in language
a_lang; corresponds to the term definition of
the concept attribute in the archetype ontology.
Editors:T Beale Page 15 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

The Archetype Package Archetype Object Model
Rev 2.0.2
1..1

physical_paths:
Set<String>

Set of language-independent paths extracted
from archetype. Paths obey Xpath-like syntax
and are formed from alternations of
C_OBJECT.node_id and
C_ATTRIBUTE.rm_attribute_name values.

logical_paths (a_lang:
String): Set<String>

Set of language-dependent paths extracted
from archetype. Paths obey the same syntax as
physical_paths, but with node_ids replaced by
their meanings from the ontology.

1..1

is_specialised: Boolean
ensure
Result implies
parent_archetype_id /= Void

True if this archetype is a specialisation of
another.

1..1

specialisation_depth:
Integer
ensure
Result = ontology.
specialisation_depth

Specialisation depth of this archetype; larger
than 0 if this archetype has a parent. Derived
from ontology.specialisation_depth.

node_ids_valid: Boolean True if every node_id found on a C_OBJECT
node is found in ontology.term_codes.

internal_references_valid:
Boolean

True if every ARCHETYPE_INTERNAL_REF.
target_path refers to a legitimate node in the
archetype definition.

constraint_references_valid:
Boolean

True if every CONSTRAINT_REF.reference
found on a C_OBJECT node in the archetype
definition is found in ontol-
ogy.constraint_codes.

is_valid: Boolean
ensure
not (node_ids_valid and
internal_references_valid and
constraint_references_valid)
implies not Result

True if the archetype is valid overall; various
tests should be used, including checks on
node_ids, internal references, and constraint
references.

CLASS ARCHETYPE
Date of Issue: 20 Nov 2008 Page 16 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model The Archetype Package
Rev 2.0.2
3.2.2 VALIDITY_KIND Class

Invariant

archetype_id_validity: archetype_id /= Void
concept_valid: ontology.has_term_code(concept_code)
uid_validity: uid /= Void implies not uid.is_empty
version_validity: version /= Void and then
version.is_equal(archetype_id.version_id)
original_language_valid: original_language /= void and then language /= Void
and then code_set(Code_set_id_languages).has_code(original_language)
description_exists: description /= Void
definition_exists: definition /= Void
ontology_exists: ontology /= Void
Specialisation_validity: is_specialised implies specialisation_depth > 0
Invariants_valid: invariants /= Void implies not invariants.is_empty

CLASS VALIDITY_KIND

Purpose An enumeration of three values which may commonly occur in constraint mod-
els.

Use
Use as the type of any attribute within this model, which expresses constraint on
some attribute in a class in a reference model. For example to indicate validity
of Date/Time fields.

Attributes Signature Meaning

1..1 const mandatory: Integer =
1001

Constant to indicate mandatory presence of
something

1..1 const optional: Integer =
1002

Constant to indicate optional presence of
something

1..1 const disallowed: Integer =
1003

Constant to indicate disallowed presence of
something

1..1 value: Integer Actual value

Functions Signature Meaning

valid_validity (a_validity:
Integer): Boolean
ensure
a_validity >= mandatory and
a_validity <= disallowed

Function to test validity values.

Invariant Validity: valid_validity(value)

CLASS ARCHETYPE
Editors:T Beale Page 17 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Constraint Model Package Archetype Object Model
Rev 2.0.2
4 Constraint Model Package

4.1 Overview
FIGURE 5 illustrates the class model of an archetype definition. This model is completely generic,
and is designed to express the semantics of constraints on instances of classes which are themselves
described in UML (or a similar object-oriented meta-model). Accordingly, the major abstractions in
this model correspond to major abstractions in object-oriented formalisms, including several varia-
tions of the notion of ‘object’ and the notion of ‘attribute’. The notion of ‘object’ rather than ‘class’ or
‘type’ is used because archetypes are about constraints on data (i.e. ‘instances’, or ‘objects’) rather
than models, which are constructed from ‘classes’.

An informal way of understanding the model is as follows. An archetype definition is an instance of a
C_COMPLEX_OBJECT, which can be thought of as expressing constraints on a object that is of some par-
ticular reference model type (recorded in the attribute rm_type_name), and which is larger than a sim-
ple instance of a primitive type such as String or Integer. The constraints define what configurations
of reference model class instances are considered to conform to the archetype. For example, certain
configurations of the classes PARTY, ADDRESS, CLUSTER and ELEMENT might be defined by a Person
archetype as allowable structures for ‘people with identity, contacts, and addresses’. Because the con-
straints allow optionality, cardinality and other choices, a given archetype usually corresponds to a set
of similar configurations of objects. At the leaf nodes of an archetype definition are
C_PRIMITIVE_OBJECT nodes, defining the constraints on leaf values of objects, i.e. Integers, Strings
etc.

4.2 Semantics
The effect of the model is to create archetype description structures that are a hierarchical alternation
of object and attribute constraints, as shown in FIGURE 3. This structure can be seen by inspecting an
ADL archetype, or by viewing an archetype in the openEHR ADL workbench [9], and is a direct con-
sequence of the object-oriented principle that classes consist of properties, which in turn have types
that are classes. (To be completely correct, types do not always correspond to classes in an object
model, but it does not make any difference here). The repeated object/attribute hierarchical structure
of an archetype provides the basis for using paths to reference any node in an archetype. Archetype
paths follow a syntax that is a subset of the W3C Xpath syntax.

4.2.1 All Node Types
A small number of properties are defined for all node types. The path feature computes the path to the
current node from the root of the archetype, while the has_path function indicates whether a given
path can be found in an archetype. The is_valid function indicates whether the current node and all
subnodes are internally valid according to the semantics of this archetype model. The is_subset_of
function is used for comparison between corresponding nodes from different archetypes, in order to
asert specialisation.

4.2.2 Attribute Node Types
Constraints on attributes are represented by instances of the two subtypes of C_ATTRIBUTE:
C_SINGLE_ATTRIBUTE and C_MULTIPLE_ATTRIBUTE. For both subtypes, the common constraint is
Date of Issue: 20 Nov 2008 Page 18 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

C_
PR

IM
IT

IV
E

pr
im

iti
ve

FI
G

U
R

E
 5

 o
pe

ne
hr

.a
m

.a
rc

he
ty

pe
.c

on
st

ra
in

t_
m

od
el

 P
ac

ka
ge

ch
ild

re
n

*

AR
CH

ET
YP

E_
CO

NS
TR

AI
NT

is
_v

al
id

: B
oo

le
an

ha
s_

pa
th

(a
_p

at
h:

 S
tri

ng
):

Bo
ol

ea
n

pa
th

: S
tri

ng
is

_s
ub

se
t_

of
 (o

th
er

: A
R

C
H

E
TY

P
E

_C
O

N
S

TR
A

IN
T)

: B
oo

le
an

C_
OB

JE
CT

rm
_t

yp
e_

na
m

e[
1]

: S
tri

ng
oc

cu
rre

nc
es

[1
]:

In
te

rv
al

<I
nt

eg
er

>
no

de
_i

d[
1]

: S
tri

ng

C_
AT

TR
IB

UT
E

rm
_a

ttr
ib

ut
e_

na
m

e[
1]

: S
tri

ng
ex

is
te

nc
e[

1]
: I

nt
er

va
l<

In
te

ge
r>

C_
PR

IM
IT

IV
E_

OB
JE

CT

AR
CH

ET
YP

E_
IN

TE
RN

AL
_R

EF
ta

rg
et

_p
at

h[
1]

: S
tri

ng

CO
NS

TR
AI

NT
_R

EF
re

fe
re

nc
e[

1]
: S

tri
ng

AR
CH

ET
YP

E_
SL

OT
in

cl
ud

es
[0

..1
]:

Li
st

<A
S

S
E

R
TI

O
N

>
ex

cl
ud

es
[0

..1
]:

Li
st

<A
S

S
E

R
TI

O
N

>
C_

CO
MP

LE
X_

OB
JE

CT

CA
RD

IN
AL

IT
Y

is
_o

rd
er

ed
[1

]:
B

oo
le

an
is

_u
ni

qu
e[

1]
: B

oo
le

an
in

te
rv

al
[1

]:
In

te
rv

al
<I

nt
eg

er
>

is
_b

ag
: B

oo
le

an
is

_l
is

t:
B

oo
le

an
is

_s
et

: B
oo

le
an

ca
rd

in
al

ity
1

at
tri

bu
te

s *

ite
m

0.
.1

co
ns

tra
in

t_
m

od
el

C_
DO

M
AI

N_
TY

PE

st
an

da
rd

_e
qu

iv
al

en
t:

C
_C

O
M

P
LE

X
_O

B
JE

C
T

pa
re

nt

C_
SI

NG
LE

_A
TT

RI
BU

TE

al
te

rn
at

iv
es

:
Li

st
<C

_O
BJ

EC
T>

C_
MU

LT
IP

LE
_A

TT
RI

BU
TE

m
em

be
rs

:
Li

st
<C

_O
BJ

EC
T>

C_
DE

FI
NE

D_
OB

JE
CT

as
su

m
ed

_v
al

ue
[0

..1
]:

An
y

de
fa

ul
t_

va
lu

e:
 li

ke
 a

ss
um

ed
_v

al
ue

an
y_

al
lo

w
ed

: B
oo

le
an

ha
s_

as
su

m
ed

_v
al

ue
: B

oo
le

an
va

lid
_v

al
ue

(a
_v

al
ue

: l
ik

e
as

su
m

ed
_v

al
ue

):
B

oo
le

an

C_
RE

FE
RE

NC
E_

OB
JE

CT

Constraint Model Package Archetype Object Model
Rev 2.0.2
whether the corresponding instance (defined by the rm_attribute_name attribute) must exist. Both
subtypes have a list of children, representing constraints on the object value(s) of the attribute.

Single-valued attributes (such as Person.date_of_birth: Date) are constrained by instances of the type
C_SINGLE_ATTRIBUTE, which uses the children to represent multiple alternative object constraints for
the attribute value.

Multiply-valued attributes (such as Person.contacts: List<Contact>) are constrained by an instance
of C_MULTIPLE_ATTRIBUTE, which allows multiple co-existing member objects of the container value
of the attribute to be constrained, along with a cardinality constraint, describing ordering and unique-
ness of the container. FIGURE 6 illustrates the two possibilities.

The need for both existence and cardinality constraints in the C_MULTIPLE_ATTRIBUTE class deserves
some explanation, especially as the meanings of these notions are often confused in object-oriented
literature. An existence constraint indicates whether an object will be found in a given attribute field,
while a cardinality constraint indicates what the valid membership of a container object is. Cardinal-
ity is only required for container objects such as List<T>, Set<T> and so on, whereas existence is
always required. If both are used, the meaning is as follows: the existence constraint says whether the
container object will be there (at all), while the cardinality constraint says how many items must be in
the container, and whether it acts logically as a list, set or bag.

4.2.3 Object Node Types
Node_id and Paths
The node_id attribute in the class C_OBJECT, inherited by all subtypes, is of great importance in the
archetype constraint model. It has two functions:

• it allows archetype object constraint nodes to be individually identified, and in particular,
guarantees sibling node unique identification;

• it is the main link between the archetype definition (i.e. the constraints) and the archetype
ontology, because each node_id is a ‘term code’ in the ontology.

The existence of node_ids in an archetype allows archetype paths to be created, which refer to each
node. Not every node in the archetype needs a node_id, if it does not need to be addressed using a
path; any leaf or near-leaf node which has no sibling nodes from the same attribute can safely have no
node_id.

Single-valued C_ATTRIBUTE
with alternatives

Multiple-valued C_ATTRIBUTE
with collection (LIST.items)

FIGURE 6 Single and Multiple-valued C_ATTRIBUTES

(PERSON.address as structured
or free text form)
Date of Issue: 20 Nov 2008 Page 20 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model Constraint Model Package
Rev 2.0.2
4.2.3.1 Defined Object Nodes (C_DEFINED_OBJECT)
The C_DEFINED_OBJECT subtype corresponds to the category of C_OBJECTs that are defined in an
archetype by value, i.e. by inline definition. Four properties characterise C_DEFINED_OBJECTs as fol-
lows.

Any_allowed
The any_allowed function a node indicates that any value permitted by the reference model for the
attribute or type in question is allowed by the archetype; its use permits the logical idea of a com-
pletely “open” constraint to be simply expressed, avoiding the need for any further substructure.
Any_allowed is effected in subtypes to indicate in concrete terms when it is True, usually related to
Void attribute values.

Assumed_value
When archetypes are defined to have optional parts, an ability to define ‘assumed’ values is useful.
For example, an archetype for the concept ‘blood pressure measurement’ might contain an optional
protocol section describing the patient position, with choices ‘lying’, ‘sitting’ and ‘standing’. Since
the section is optional, data could be created according to the archetype which does not contain the
protocol section. However, a blood pressure cannot be taken without the patient in some position, so
clearly there could be an implied value for patient position. Amongst clinicians, basic assumptions
are nearly always made for such things: in general practice, the position could always safely be
assumed to be “sitting” if not otherwise stated; in the hospital setting, “lying” would be the normal
assumption. The assumed values feature of archetypes allows such assumptions to be explicitly stated
so that all users/systems know what value to assume when optional items are not included in the data.
Assumed values are definable at the leaf level only, which appears to be adequate for all purposes
described to date; accordingly, they appear in descendants of C_PRIMITIVE and also C_DOMAIN_TYPE.

The notion of assumed values is distinct from that of ‘default values’. The latter is a local require-
ment, and as such is stated in templates; default values do appear in data, while assumed values don’t.

Valid_value
The valid_value function tests a reference model object for conformance to the archetype. It is
designed for recursive implementation in which a call to the function at the top of the archetype defi-
nition would cause a cascade of calls down the tree. This function is the key function of an ‘arche-
type-enabled kernel’ component that can perform runtime data validation based on an archetype
definition.

Default_value
This function is used to generate a reasonable default value of the reference object being constrained
by a given node. This allows archteype-based software to build a ‘prototype’ object from an arche-
type which can serve as the initial version of the object being constrained, assuming it is being created
new by user activity (e.g. via a GUI application). Implementation of this function will usually involve
use of reflection libraries or similar.

4.2.3.2 Complex Objects (C_COMPLEX_OBJECT)
Along with C_ATTRIBUTE, C_COMPLEX_OBJECT is the key structuring type of the constraint_model
package, and consists of attributes of type C_ATTRIBUTE, which are constraints on the attributes (i.e.
any property, including relationships) of the reference model type. Accordingly, each C_ATTRIBUTE
records the name of the constrained attribute (in rm_attr_name), the existence and cardinality
expressed by the constraint (depending on whether the attribute it constrains is a multiple or single
relationship), and the constraint on the object to which this C_ATTRIBUTE refers via its children
attribute (according to its reference model) in the form of further C_OBJECTs.
Editors:T Beale Page 21 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Constraint Model Package Archetype Object Model
Rev 2.0.2
4.2.3.3 Primitive Types
Constraints on primitive types are defined by the classes inheriting from C_PRIMITIVE, namely
C_STRING, C_INTEGER and so on. These types do not inherit from ARCHETYPE_CONSTRAINT, but rather
are related by association, in order to allow them to have the simplest possible definitions, independ-
ent even from the rest of ADL, in the hope of acceptance in heath standardisation organisations. Tech-
nically, avoiding inheritance from ARCHETYPE_CONSTRAINT / C_PRIMITIVE_OBJECT into these base
types (in other words, coalescing the classes C_PRIMITIVE_OBJECT and C_PRIMITIVE) does not pose
a problem, but could be effected at a later date if desired.

4.2.3.4 Domain-specific Extensions (C_DOMAIN_TYPE)
The main part of the archetype constraint model allows any type in a reference model to be arche-
typed - i.e. constrained - in a standard way, which is to say, by a regular cascade of
C_COMPLEX_OBJECT / C_ATTRIBUTE / C_PRIMITIVE_OBJECT objects. This generally works well, espe-
cially for ‘outer’ container types in models. However, it occurs reasonably often that lower level log-
ical ‘leaf’ types need special constraint semantics that are not conveniently achieved with the
standard aproach. To enable such classes to be integrated into the generic constraint model, the class
C_DOMAIN_TYPE is included. This enables the creation of specific “C_” classes, inheriting from
C_DOMAIN_TYPE, which represent custom semantics for particular reference model types. For exam-
ple, a class called C_QUANTITY might be created which has different constraint semantics from the
default effect of a C_COMPLEX_OBJECT / C_ATTRIBUTE cascade representing such constraints in the
generic way (i.e. systematically based on the reference model). An example of domain-specific exten-
sion classes is shown in Domain-specific Extension Example on page 51.

4.2.3.5 Reference Objects (C_REFERENCE_OBJECT)
The subtypes of C_REFERENCE_OBJECT, namely, ARCHETYPE_SLOT, ARCHETYPE_INTERNAL_REF and
CONSTRAINT_REF are used to express, respectively, a ‘slot’ where further archetypes can be used to
continue describing constraints; a reference to a part of the current archetype that expresses exactly
the same constraints needed at another point; and a reference to a constraint on a constraint defined in
the archetype ontology, which in turn points to an external knowledge resource, such as a terminol-
ogy.

A CONSTRAINT_REF is really a proxy for a set of constraints on an object that would normally occur at
a particular point in the archetype as a C_COMPLEX_OBJECT, but where the actual definition of the con-
straints is outside the archetype definition proper, and is instead expressed in the binding of the con-
straint reference (e.g. ‘ac0004’) to a query or expression into an external service (e.g. a terminology
service). The result of the query could be something like:

• a set of allowed CODED_TERMs e.g. the types of hepatitis
• an INTERVAL<QUANTITY> forming a reference range
• a set of units or properties or other numerical item

See the ADL specification for a fuller explanation, under the heading Placeholder constraints in the
cADL section.

4.2.4 Assertions
The C_ATTRIBUTE and subtypes of C_OBJECT enable constraints to be expressed in a structural fash-
ion such that any constraint concerning a single attribute may be expressed, including recursively. In
addition to this, any instance of a C_COMPLEX_OBJECT may include one or more invariants. Invariants
are statements in a form of predicate logic, which can also be used to state constraints on parts of an
object. They are not needed to constrain single attributes (since this can be done with an appopriate
C_ATTRIBUTE), but are necessary for constraints referring to more than one attribute, such as a con-
Date of Issue: 20 Nov 2008 Page 22 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model Constraint Model Package
Rev 2.0.2
straint that ‘systolic pressure should be >= diastolic pressure’ in a blood pressure measurement arche-
type. Invariants are expressed using a syntax derived from the OMG’s OCL syntax (adapted for use
with objects rather than classes).

Assertions are also used in ARCHETYPE_SLOTs, in order to express the ‘included’ and ‘excluded’
archetypes for the slot. In this case, each assertion is an expression that refers to parts of other arche-
types, such as its identifier (e.g. ‘include archetypes with short_concept_name matching xxxx’).
Assertions are modelled here as a generic expression tree of unary prefix and binary infix operators.
Examples of archetype slots in ADL syntax are given in the openEHR ADL document.

4.3 Class Definitions

4.3.1 ARCHETYPE_CONSTRAINT Class

CLASS ARCHETYPE_CONSTRAINT (abstract)

Purpose
Archetype equivalent to LOCATABLE class in openEHR Common reference
model. Defines common constraints for any inheritor of LOCATABLE in any refer-
ence model.

Abstract Signature Meaning

is_subset_of (other:
ARCHETYPE_CONSTRAINT):
Boolean
require
other /= Void

True if constraints represented by other are
narrower than this node. Note: not easily
evaluatable for CONSTRAINT_REF nodes.

is_valid: Boolean True if this node (and all its sub-nodes) is a
valid archetype node for its type. This func-
tion should be implemented by each subtype
to perform semantic validation of itself, and
then call the is_valid function in any sub-
parts, and generate the result appropriately.

Functions Signature Meaning

path: String Path of this node relative to root of archetype.

has_path (a_path: String):
Boolean
require
a_path /= Void

True if the relative path a_path exists at this
node.

Invariant path_exists: path /= Void
Editors:T Beale Page 23 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Constraint Model Package Archetype Object Model
Rev 2.0.2
4.3.2 C_ATTRIBUTE Class

4.3.3 C_SINGLE_ATTRIBUTE Class

4.3.4 C_MULTIPLE_ATTRIBUTE Class

CLASS C_ATTRIBUTE(abstract)

Purpose Abstract model of constraint on any kind of attribute node.

Attributes Signature Meaning

1..1 rm_attribute_name: String Reference model attribute within the enclos-
ing type represented by a C_OBJECT.

1..1

existence:
Interval<Integer>

Constraint on every attribute, regardless of
whether it is singular or of a container type,
which indicates whether its target object
exists or not (i.e. is mandatory or not).

0..1

children: List<C_OBJECT> Child C_OBJECT nodes. Each such node rep-
resents a constraint on the type of this
attribute in its reference model. Multiples
occur both for multiple items in the case of
container attributes, and alternatives in the
case of singular attributes.

Invariant

Rm_attribute_name_valid: rm_attribute_name /= Void and then not
rm_attribute_name.is_empty
Existence_set: existence /= Void and then (existence.lower >= 0 and exist-
ence.upper <= 1)
Children_validity: any_allowed xor children /= Void

CLASS C_SINGLE_ATTRIBUTE

Purpose Concrete model of constraint on a single-valued attribute node. The meaning of
the inherited children attribute is that they are alternatives.

Functions Signature Meaning

alternatives: List<C_OBJECT> List of alternative constraints for the single
child of this attribute within the data.

Invariant Alternatives_exists: alternatives /= Void

CLASS C_MULTIPLE_ATTRIBUTE

Purpose Concrete model of constraint on multiply-valued (ie. container) attribute node.

Attributes Signature Meaning
Date of Issue: 20 Nov 2008 Page 24 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model Constraint Model Package
Rev 2.0.2
4.3.5 CARDINALITY Class

1..1 cardinality: CARDINALITY Cardinality of this attribute constraint, if it
constraints a container attribute.

Functions Signature Meaning

members: List<C_OBJECT> List of constraints representing members of
the container value of this attribute within the
data. Semantics of the uniqueness and order-
ing of items in the container are given by the
cardinality.

Invariant
Cardinality_validity: cardinality /= Void
Members_valid: members /= Void and then members.for_all(co: C_OBJECT |
co.occurrences.upper <= 1)

CLASS CARDINALITY

Purpose

Express constraints on the cardinality of container objects which are the values of
multiply-valued attributes, including uniqueness and ordering, providing the
means to state that a container acts like a logical list, set or bag. The cardinality
cannot contradict the cardinality of the corresponding attribute within the relevant
reference model.

Attributes Signature Meaning

1..1 is_ordered: Boolean True if the members of the container attribute
to which this cardinality refers are ordered.

1..1 is_unique: Boolean True if the members of the container attribute
to which this cardinality refers are unique.

1..1 interval: Interval<Integer> The interval of this cardinality.

Functions Signature Meaning

is_set: Boolean
ensure
Result = not is_ordered and
is_unique

True if the semantics of this cardinality repre-
sent a set, i.e. unordered, unique member-
ship.

is_list: Boolean
ensure
Result = is_ordered and not

is_unique

True if the semantics of this cardinality repre-
sent a list, i.e. ordered, non-unique member-
ship.

CLASS C_MULTIPLE_ATTRIBUTE
Editors:T Beale Page 25 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Constraint Model Package Archetype Object Model
Rev 2.0.2
4.3.6 C_OBJECT Class

4.3.7 C_DEFINED_OBJECT Class

is_bag Boolean
ensure
Result = not is_ordered and not
is_unique

True if the semantics of this cardinality repre-
sent a bag, i.e. unordered, non-unique mem-
bership.

Invariant Validity: not interval.lower_unbounded

CLASS C_OBJECT (abstract)

Purpose Abstract model of constraint on any kind of object node.

Attributes Signature Meaning

1..1 rm_type_name: String Reference model type that this node corre-
sponds to.

1..1

occurrences:
Interval<Integer>

Occurrences of this object node in the data,
under the owning attribute. Upper limit can
only be greater than 1 if owning attribute has
a cardinality of more than 1).

1..1

node_id: String Semantic id of this node, used to differentiate
sibling nodes of the same type. [Previously
called ‘meaning’]. Each node_id must be
defined in the archetype ontology as a term
code.

0..1 parent: C_ATTRIBUTE C_ATTRIBUTE that owns this C_OBJECT.

Invariant

rm_type_name_valid: rm_type_name /= Void and then not
rm_type_name.is_empty
node_id_valid: node_id /= Void and then not node_id.is_empty
Occurrences_validity: occurrences /= Void and then
(parent /= Void implies (not parent.is_multiple implies occurrences.upper <= 1))

CLASS C_DEFINED_OBJECT (abstract)

Purpose Abstract parent type of C_OBJECT subtypes that are defined by value, i.e. whose
definitions are actually in the archetype rather than being by reference.

Inherit C_OBJECT

Abstract Signature Meaning

CLASS CARDINALITY
Date of Issue: 20 Nov 2008 Page 26 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model Constraint Model Package
Rev 2.0.2
4.3.8 C_COMPLEX_OBJECT Class

default_value: like
assumed_value

Generate a default value from this constraint
object

valid_value (a_value: like
assumed_value): Boolean
require
a_value /= Void

True if a_value is valid with respect to con-
straint expressed in concrete instance of this
type.

any_allowed: Boolean True if any value (i.e. instance) of the refer-
ence model type would be allowed. Rede-
fined in descedants.

Attributes Signature Meaning

0..1 assumed_value: Any Value to be assumed if none sent in data

Functions Signature Meaning

has_assumed_value: Boolean True if there is an assumed value

Invariant Assumed_value_valid: has_assumed_value implies valid_value(assumed_value)

CLASS C_COMPLEX_OBJECT

Purpose Constraint on complex objects, i.e. any object that consists of other object con-
straints.

Inherit C_DEFINED_OBJECT

Functions Signature Meaning

(effected)
any_allowed: Boolean
ensure
Result = attributes.is_empty

True if any value of the reference model type
being constrained is allowed.

Attributes Signature Meaning

0..1 attributes:
Set<C_ATTRIBUTE>

List of constraints on attributes of the refer-
ence model type represented by this object.

Invariant attributes_valid: any_allowed xor (attributes /= Void and not
attributes.is_empty)

CLASS C_DEFINED_OBJECT (abstract)
Editors:T Beale Page 27 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Constraint Model Package Archetype Object Model
Rev 2.0.2
4.3.9 C_PRIMITIVE_OBJECT Class

4.3.10 C_DOMAIN_TYPE Class

4.3.11 C_REFERENCE_OBJECT Class

CLASS C_PRIMITIVE_OBJECT

Purpose Constraint on a primitive type.

Inherit C_DEFINED_OBJECT

Functions Signature Meaning

(effected)
any_allowed: Boolean
ensure
Result = (item = Void)

True if any value of the type being con-
strained in item is allowed.

Attributes Signature Meaning

0..1 item: C_PRIMITIVE Object actually defining the constraint.

Invariant item_exists: any_allowed xor item /= Void

CLASS C_DOMAIN_TYPE (abstract)

Purpose Abstract parent type of domain-specific constrainer types, to be defined in exter-
nal packages.

Inherit C_DEFINED_OBJECT

Abstract Signature Meaning

standard_equivalent:
C_COMPLEX_OBJECT

Standard (i.e. C_OBJECT) form of constraint.

Invariant

CLASS C_REFERENCE_OBJECT (abstract)

Purpose Abstract parent type of C_OBJECT subtypes that are defined by reference.

Inherit C_OBJECT

Abstract Signature Meaning

Invariant
Date of Issue: 20 Nov 2008 Page 28 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model Constraint Model Package
Rev 2.0.2
4.3.12 ARCHETYPE_SLOT Class

4.3.13 ARCHETYPE_INTERNAL_REF Class

CLASS ARCHETYPE_SLOT

Purpose Constraint describing a ‘slot’ where another archetype can occur.

Inherit C_REFERENCE_OBJECT

Attributes Signature Meaning

0..1 includes: Set <ASSERTION> List of constraints defining other archetypes
that could be included at this point.

0..1 excludes: Set<ASSERTION> List of constraints defining other archetypes
that cannot be included at this point.

Invariant
includes_valid: includes /= Void implies not includes.is_empty
excludes_valid: excludes /= Void implies not excludes.is_empty
validity: any_allowed xor (includes /= Void or excludes /= Void)

CLASS ARCHETYPE_INTERNAL_REF

Purpose

A constraint defined by proxy, using a reference to an object constraint defined
elsewhere in the same archetype.

Note that since this object refers to another node, there are two objects with avail-
able occurrences values. The local occurrences value on an
ARCHETYPE_INTERNAL_REF should always be used; when setting this from a seri-
alised form, if no occurrences is mentioned, the target occurrences should be used
(not the standard default of {1..1}); otherwise the locally specified occurrences
should be used as normal. When serialising out, if the occurrences is the same as
that of the target, it can be left out.

Inherit C_REFERENCE_OBJECT

Attributes Signature Meaning

1..1 target_path: String Reference to an object node using archetype
path notation.

Invariant
Consistency: not any_allowed
target_path_valid: target_path /= Void and then not target_path.is_empty
-- and then ultimate_root.has_path(target_path)
Editors:T Beale Page 29 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Constraint Model Package Archetype Object Model
Rev 2.0.2
4.3.14 CONSTRAINT_REF Class

CLASS CONSTRAINT_REF

Purpose
Reference to a constraint described in the same archetype, but outside the main
constraint structure. This is used to refer to constraints expressed in terms of
external resources, such as constraints on terminology value sets.

Inherit C_REFERENCE_OBJECT

Attributes Signature Meaning

1..1 reference: String Reference to a constraint in the archetype
local ontology.

Invariant Consistency: not any_allowed
reference_valid: reference /= Void
Date of Issue: 20 Nov 2008 Page 30 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model The Assertion Package
Rev 2.0.2
5 The Assertion Package

5.1 Overview
Assertions are expressed in archetypes in typed first-order predicate logic (FOL). They are used in
two places: to express archetype slot constraints, and to express invariants in complex object con-
straints. In both of these places, their role is to constrain something inside the archetype. Constraints
on external resources such as terminologies are expressed in the constraint binding part of the arche-
type ontology, described in section 7 on page 47. The assertion package is illustrated below in FIG-
URE 7.

5.2 Semantics
The concrete syntax of assertion statements in archetypes is designed to be compatible with the OMG
Object Constraint Language (OCL) [10]. Archetype assertions are essentially statements which con-
tain the following elements:

• variables, which are attribute names, or ADL paths terminating in attribute names (i.e.
equivalent of referencing class feature in a programming language);

• manifest constants of any primitive type, plus date/time types
• arithmetic operators: +, *, -, /, ^ (exponent), % (modulo division)
• relational operators: >, <, >=, <=, =, !=, matches
• boolean operators: not, and, or, xor
• quantifiers applied to container variables: for_all, exists

FIGURE 7 The openehr.am.archetype.assertion package

ASSERTION
tag[0..1]: String
string_expression[0..1]:
String

EXPR_ITEM
type[1]: String

EXPR_OPERATOR
operator[1]: OPERATOR_KIND
precedence_overridden[1]:
Boolean

EXPR_LEAF
item[1]: ANY
reference_type[1]:
String

EXPR_UNARY_
OPERATOR

EXPR_BINARY_
OPERATOR

left_operand

right_operand

1
1

operand
1

expression
1

ASSERTION_VARIABLE
name[1]: String
definition[1]: String

variables 0..*

OPERATOR_KIND
const op_eq: Integer = 2001
const op_ne, op_le, op_lt, op_ge,
op_gt, op_matches,
op_multiply, op_plus, op_minus,
op_divide, op_exp,
op_not, op_and, op_or, op_xor,
op_implies,
op_for_all, op_exists: Integer = ...
value: Integer

assertion
Editors:T Beale Page 31 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

The Assertion Package Archetype Object Model
Rev 2.0.2
The written syntax of assertions is defined in the openEHR ADL document. The package described
here is currently designed to allow the representation of a general-purpose binary expression tree, as
would be generated by a parser. This may be replaced in the future by a more specific model, if
needed.

This relatively simple model of expressions is sufficiently powerful for representing FOL expressions
on archetype structures, although it could clearly be more heavily subtyped.

5.3 Class Descriptions

5.3.1 ASSERTION Class

5.3.2 EXPR_ITEM Class

CLASS ASSERTION

Purpose Structural model of a typed first order predicate logic assertion, in the form of an
expression tree, including optional variable definitions.

Attributes Signature Meaning

0..1 tag: String Expression tag, used for differentiating mul-
tiple assertions.

1..1 expression: EXPR_ITEM Root of expression tree.

0..1
string_expression: String String form of expression, in case an expres-

sion evaluator taking String expressions is
used for evaluation.

0..1 variables:
List<ASSERTION_VARIABLE>

Definitions of variables used in the assertion
expression.

Invariant
Tag_valid: tag /= Void implies not tag.is_empty
Expression_valid: expression /= Void and then expres-
sion.type.is_equal(“BOOLEAN”)

CLASS EXPR_ITEM (abstract)

Purpose Abstract parent of all expression tree items.

Attributes Signature Meaning

1..1

type: String Type name of this item in the mathematical
sense. For leaf nodes, must be the name of a
primitive type, or else a reference model
type. The type for any relational or boolean
operator will be “Boolean”, while the type
for any arithmetic operator, will be “Real” or
“Integer”.
Date of Issue: 20 Nov 2008 Page 32 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model The Assertion Package
Rev 2.0.2
5.3.3 EXPR_LEAF Class

5.3.4 EXPR_OPERATOR Class

Invariant Type_valid: type /= Void and then not type.is_empty

CLASS EXPR_LEAF

Purpose

Expression tree leaf item. This can represent one of:

• a manifest constant of any primitive type (Integer, Real, Boolean, String,
Character, Date, Time, Date_time, Duration), or (in future) of any complex
reference model type, e.g. a DV_CODED_TEXT;

• a path referring to a value in the archetype (paths with a leading ‘/’ are in the
definition section; paths with no leading ‘/’ are in the outer part of the arche-
type, e.g. “archetype_id/value” refers to the String value of the archetype_id
attribute of the enclosing archetype;

• a constraint, expressed in the form of concrete subtype of C_OBJECT; most
often this will be a C_PRIMITIVE_OBJECT.

Inherit EXPR_ITEM

Attributes Signature Meaning

1..1

item: ANY The value referred to; a manifest constant, an
attribute path (in the form of a String), or for
the right-hand side of a ‘matches’ node, a
constraint, often a C_PRIMITIVE_OBJECT.
[Future: paths including function names as
well, even if not constrained in the archetype
- as long as they are in the reference model].

1..1

reference_type: String Type of reference: “constant”, “attribute”,
“function”, “constraint”. The first three are
used to indicate the referencing mechanism
for an operand. The last is used to indicate a
constraint operand, as happens in the case of
the right-hand operand of the ‘matches’ oper-
ator.

Invariant Item_valid: item /= Void
Reference_type_valid: reference_type /= Void

CLASS EXPR_OPERATOR (abstract)

Purpose Abstract parent of operator types.

CLASS EXPR_ITEM (abstract)
Editors:T Beale Page 33 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

The Assertion Package Archetype Object Model
Rev 2.0.2
5.3.5 EXPR_UNARY_OPERATOR Class

5.3.6 EXPR_BINARY_OPERATOR Class

Inherit EXPR_ITEM

Attributes Signature Meaning

1..1 operator: OPERATOR_KIND Code of operator.

1..1

precedence_overridden:
Boolean

True if the natural precedence of operators is
overridden in the expression represented by
this node of the expression tree. If True,
parentheses should be introduced around the
totality of the syntax expression correspond-
ing to this operator node and its operands.

Invariant

CLASS EXPR_UNARY_OPERATOR

Purpose Unary operator expression node.

Inherit EXPR_OPERATOR

Attributes Signature Meaning

1..1 operand: EXPR_ITEM Operand node.

Invariant operand_valid: operand /= Void

CLASS EXPR_BINARY_OPERATOR

Purpose Binary operator expression node.

Inherit EXPR_OPERATOR

Attributes Signature Meaning

1..1 left_operand: EXPR_ITEM Left operand node.

1..1 right_operand: EXPR_ITEM Right operand node.

Invariant left_operand_valid: operand /= Void
right_operand_valid: operand /= Void

CLASS EXPR_OPERATOR (abstract)
Date of Issue: 20 Nov 2008 Page 34 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model The Assertion Package
Rev 2.0.2
5.3.7 ASSERTION_VARIABLE Class

CLASS ASSERTION_VARIABLE

Purpose Definition of a named variable used in an assertion expression. Note: the defini-
tion of named variables may change; still under development in ADL2.

Attributes Signature Meaning

1..1 name: String Name of variable.

1..1 definition: String Formal definition of the variable. (see ADL2
specification; still under development).

Invariant Name_valid: name /= Void and then not name.is_empty
Definition_valid: definition /= Void and then not definition.is_empty
Editors:T Beale Page 35 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

The Assertion Package Archetype Object Model
Rev 2.0.2
5.3.8 OPERATOR_KIND Class

CLASS OPERATOR_KIND

Purpose Enumeration type for operator types in assertion expressions

Use Use as the type of operators in the Assertion package, or for related uses.

Constants Signature Meaning

op_eq: Integer = 2001 Equals operator (‘=’ or ‘==’)

op_ne: Integer = 2002 Not equals operator (‘!=’ or ‘/=’ or ‘<>’)

op_le: Integer = 2003 Less-than or equals operator (‘<=’)

op_lt: Integer = 2004 Less-than operator (‘<’)

op_ge: Integer = 2005 Greater-than or equals operator (‘>=’)

op_gt: Integer = 2006 Greater-than operator (‘>’)

op_matches: Integer =
2007

Matches operator (‘matches’ or ‘is_in’)

op_not: Integer = 2010 Not logical operator

op_and: Integer = 2011 And logical operator

op_or: Integer = 2012 Or logical operator

op_xor: Integer = 2013 Xor logical operator

op_implies: Integer = 2014 Implies logical operator

op_for_all: Integer = 2015 For-all quantifier operator

op_exists: Integer = 2016 Exists quantifier operator

op_plus: Integer = 2020 Plus operator (‘+’)

op_minus: Integer = 2021 Minus operator (‘-’)

op_multiply: Integer =
2022

Multiply operator (‘*’)

op_divide: Integer = 2023 Divide operator (‘/’)
Date of Issue: 20 Nov 2008 Page 36 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model The Assertion Package
Rev 2.0.2
op_exp: Integer = 2024 Exponent operator (‘^’)

Attributes Signature Meaning

value: Integer Actual value of this instance

Functions Signature Meaning

valid_operator (an_op: Inte-
ger): Boolean
ensure
an_op >= op_eq and
an_op <= op_exp

Function to test operator values.

Invariant Validity: valid_operator(value)

CLASS OPERATOR_KIND
Editors:T Beale Page 37 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

The Primitive Package Archetype Object Model
Rev 2.0.2
6 The Primitive Package

6.1 Overview
Ultimately any archetype definition will devolve down to leaf node constraints on instances of primi-
tive types. The primitive package, illustrated in FIGURE 8, defines the semantics of constraint on
such types.

Most of the types provide at least two alternative ways to represent the constraint; for example the
C_DATE type allows the constraint to be expressed in the form of a pattern (defined in the ADL speci-

(am.archetype.constraint_model)

primitive

FIGURE 8 The openehr.am.archetype.primitive Package

item 1

C_PRIMITIVE

default_value: ANY
assumed_value: ANY
has_assumed_value: Boolean
valid_value(a_value:ANY): Boolean

C_BOOLEAN
true_valid[1]:
Boolean
false_valid[1]:
Boolean
assumed_value[0..1]
: Boolean

C_STRING
pattern[0..1]: String
list[0..1]: Set<String>
list_open[0..1]:
Boolean
assumed_value
[0..1]: String

C_INTEGER
list[0..1]: Set<Integer>
range[0..1]:
Interval<Integer>
assumed_value: Integer

C_REAL
list[0..1]: Set<Real>
range[0..1]:
Interval<Real>
assumed_value: Real

C_DATE
month_validity[0..1]:
VALIDITY_KIND
day_validity[0..1]:
VALIDITY_KIND
timezone_validity[0..1]:
VALIDITY_KIND
range[0..1]: Interval<Date>
assumed_value[0..1]: Date

C_TIME
minute_validity[0..1]:
VALIDITY_KIND
second_validity[0..1]:
VALIDITY_KIND
millisecond_validity
[0..1]: VALIDITY_KIND
timezone_validity[0..1]:
VALIDITY_KIND
range[0..1]:
Interval<Time>
assumed_value[0..1]:
Time

C_DURATION
years_allowed
[0..1]: Boolean
months_allowed
[0..1]: Boolean
weeks_allowed
[0..1]: Boolean
days_allowed
[0..1]: Boolean
hours_allowed
[0..1]: Boolean
minutes_allowed
[0..1]: Boolean
seconds_allowed
[0..1]: Boolean
fractional_seconds_
allowed
[0..1]: Boolean
range[0..1]:
Interval<Duration>
assumed_value
[0..1]: Duration

C_DATE_TIME
month_validity[0..1]:
VALIDITY_KIND
day_validity[0..1]:
VALIDITY_KIND
hour_validity[0..1]:
VALIDITY_KIND
minute_validity[0..1]:
VALIDITY_KIND
second_validity[0..1]:
VALIDITY_KIND
millisecond_validity[0..1]:
VALIDITY_KIND
timezone_validity[0..1]:
VALIDITY_KIND
range[0..1]:
Interval<Date_Time>
assumed_value[0..1]:
Date_Time

C_PRIMITIVE_OBJECT
Date of Issue: 20 Nov 2008 Page 38 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model The Primitive Package
Rev 2.0.2
fication) or an Interval<Date>. Note that the interval form of dates is probably only useful for his-
torical date checking (e.g. the date of an antique or a particular batch of vaccine), rather than
constraints on future date/times.

6.2 Class Descriptions

6.2.1 C_PRIMITIVE Class

6.2.2 C_BOOLEAN Class

CLASS C_PRIMITIVE (abstract)

Purpose Abstract supertype of all prmitive types.

Abstract Signature Meaning

1..1 default_value: ANY Generate a default value from this constraint
object

1..1 has_assumed_value: Boolean True if there is an assumed value

1..1 assumed_value: like
default_value

Value to be assumed if none sent in data

valid_value (a_value: like
default_value): Boolean
require
a_value /= Void

True if a_value is valid with respect to con-
straint expressed in concrete instance of this
type.

Invariant Assumed_value_valid: has_assumed_value implies valid_value(assumed_value)

CLASS C_BOOLEAN

Purpose Constraint on instances of Boolean.

Use Both attributes cannot be set to False, since this would mean that the Boolean
value being constrained cannot be True or False.

Inherit C_PRIMITIVE

Attributes Signature Meaning

1..1 true_valid: Boolean True if the value True is allowed

1..1 false_valid: Boolean True if the value False is allowed

1..1
(redefined)

assumed_value: Boolean The value to assume if this item is not
included in data, due to being part of an
optional structure.
Editors:T Beale Page 39 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

The Primitive Package Archetype Object Model
Rev 2.0.2
6.2.3 C_STRING Class

6.2.4 C_INTEGER Class

Invariant
Binary_consistency: true_valid or false_valid
Default_value_consistency: default_value.value and true_valid or else not
default_value.value and false_valid

CLASS C_STRING

Purpose Constraint on instances of STRING.

Inherit C_PRIMITIVE

Attributes Signature Meaning

0..1
(cond)

pattern: String Regular expression pattern for proposed
instances of String to match.

0..1
(cond)

list: Set<String> Set of Strings specifying constraint

1..1 list_open: Boolean True if the list is being used to specify the
constraint but is not considered exhaustive.

1..1
(redefined)

assumed_value: String The value to assume if this item is not
included in data, due to being part of an
optional structure.

Invariant Consistency: pattern /= Void xor list /= Void
pattern_exists: pattern /= Void implies not pattern.is_empty

CLASS C_INTEGER

Purpose Constraint on instances of Integer.

Inherit C_PRIMITIVE

Attributes Signature Meaning

0..1
(cond)

list: Set<Integer> Set of Integers specifying constraint

0..1
(cond)

range: Interval<Integer> Range of Integers specifying constraint

CLASS C_BOOLEAN
Date of Issue: 20 Nov 2008 Page 40 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model The Primitive Package
Rev 2.0.2
6.2.5 C_REAL Class

6.2.6 C_DATE Class

1..1
(redefined)

assumed_value: Integer The value to assume if this item is not
included in data, due to being part of an
optional structure.

Invariant Consistency: list /= Void xor range /= Void

CLASS C_REAL

Purpose Constraint on instances of Real.

Inherit C_PRIMITIVE

Attributes Signature Meaning

0..1
(cond)

list: Set<Real> Set of Reals specifying constraint

0..1
(cond)

range: Interval<Real> Range of Real specifying constraint

1..1
(redefined)

assumed_value: Real The value to assume if this item is not
included in data, due to being part of an
optional structure.

Invariant Consistency: list /= Void xor range /= Void

CLASS C_DATE

Purpose

ISO 8601-compatible constraint on instances of Date in the form either of a set of
validity values, or an actual date range. There is no validity flag for ‘year’, since it
must always be by definition mandatory in order to have a sensible date at all.
Syntax expressions of instances of this class include “YYYY-??-??” (date with
optional month and day).

Use Date ranges are probably only useful for historical dates.

Inherit C_PRIMITIVE

Attributes Signature Meaning

0..1
(cond)

month_validity: VALIDITY_KIND Validity of month in constrained date.

CLASS C_INTEGER
Editors:T Beale Page 41 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

The Primitive Package Archetype Object Model
Rev 2.0.2
6.2.7 C_TIME Class

0..1
(cond)

day_validity: VALIDITY_KIND Validity of day in constrained date.

0..1
(cond)

timezone_validity:
VALIDITY_KIND

Validity of timezone in constrained date.

0..1
(cond)

range: Interval<Date> Interval of Dates specifying constraint

1..1
(redefined)

assumed_value: Date The value to assume if this item is not
included in data, due to being part of an
optional structure.

Functions Signature Meaning

1..1
validity_is_range: Boolean True if validity is in the form of a range;

useful for developers to check which kind
of constraint has been set.

Invariant

Month_validity_optional: month_validity = {VALIDITY_KIND}.optional implies
(day_validity = {VALIDITY_KIND}.optional or day_validity =
{VALIDITY_KIND}.disallowed)
Month_validity_disallowed: month_validity = {VALIDITY_KIND}.disallowed
implies day_validity = {VALIDITY_KIND}.disallowed
Validity_is_range: validity_is_range = (range /= Void)

CLASS C_TIME

Purpose

ISO 8601-compatible constraint on instances of Time. There is no validity flag
for ‘hour’, since it must always be by definition mandatory in order to have a sen-
sible time at all. Syntax expressions of instances of this class include “HH:??:xx”
(time with optional minutes and seconds not allowed).

Inherit C_PRIMITIVE

Attributes Signature Meaning

0..1
(cond)

minute_validity:
VALIDITY_KIND

Validity of minute in constrained time.

0..1
(cond)

second_validity:
VALIDITY_KIND

Validity of second in constrained time.

0..1
(cond)

millisecond_validity:
VALIDITY_KIND

Validity of millisecond in constrained time.

CLASS C_DATE
Date of Issue: 20 Nov 2008 Page 42 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model The Primitive Package
Rev 2.0.2
6.2.8 C_DATE_TIME Class

0..1
(cond)

timezone_validity:
VALIDITY_KIND

Validity of timezone in constrained date.

0..1
(cond)

range: Interval<Time> Interval of Times specifying constraint

1..1
(redefined)

assumed_value: Time The value to assume if this item is not
included in data, due to being part of an
optional structure.

Functions Signature Meaning

1..1
validity_is_range: Boolean True if validity is in the form of a range; use-

ful for developers to check which kind of
constraint has been set.

Invariant

Minute_validity_optional: minute_validity = {VALIDITY_KIND}.optional implies
(second_validity = {VALIDITY_KIND}.optional or second_validity =
{VALIDITY_KIND}.disallowed)
Minute_validity_disallowed: minute_validity = {VALIDITY_KIND}.disallowed
implies second_validity = {VALIDITY_KIND}.disallowed
Second_validity_optional: second_validity = {VALIDITY_KIND}.optional implies
(millisecond_validity = {VALIDITY_KIND}.optional or
millisecond_validity = {VALIDITY_KIND}.disallowed)
Second_validity_disallowed: second_validity = {VALIDITY_KIND}.disallowed
implies millisecond_validity = {VALIDITY_KIND}.disallowed
Validity_is_range: validity_is_range = (range /= Void)

CLASS C_DATE_TIME

Purpose

ISO 8601-compatible constraint on instances of Date_Time. There is no validity
flag for ‘year’, since it must always be by definition mandatory in order to have a
sensible date/time at all. Syntax expressions of instances of this class include
“YYYY-MM-DDT??:??:??” (date/time with optional time) and “YYYY-MM-
DDTHH:MM:xx” (date/time, seconds not allowed).

Inherit C_PRIMITIVE

Attributes Signature Meaning

0..1
(cond)

month_validity:
VALIDITY_KIND

Validity of month in constrained date.

0..1
(cond)

day_validity: VALIDITY_KIND Validity of day in constrained date.

CLASS C_TIME
Editors:T Beale Page 43 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

The Primitive Package Archetype Object Model
Rev 2.0.2
0..1
(cond)

hour_validity: VALIDITY_KIND Validity of hour in constrained time.

0..1
(cond)

minute_validity:
VALIDITY_KIND

Validity of minute in constrained time.

0..1
(cond)

second_validity:
VALIDITY_KIND

Validity of second in constrained time.

0..1
(cond)

millisecond_validity:
VALIDITY_KIND

Validity of millisecond in constrained time.

0..1
(cond)

timezone_validity:
VALIDITY_KIND

Validity of timezone in constrained date.

0..1
(cond)

range:
Interval<Date_Time>

Range of Date_times specifying constraint

1..1
(redefined)

assumed_value: Date_Time The value to assume if this item is not
included in data, due to being part of an
optional structure.

Functions Signature Meaning

1..1
validity_is_range: Boolean True if validity is in the form of a range; use-

ful for developers to check which kind of
constraint has been set.

CLASS C_DATE_TIME
Date of Issue: 20 Nov 2008 Page 44 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model The Primitive Package
Rev 2.0.2
Invariant

Month_validity_optional: month_validity = {VALIDITY_KIND}.optional implies
(day_validity = {VALIDITY_KIND}.optional or day_validity =
{VALIDITY_KIND}.disallowed)
Month_validity_disallowed: month_validity = {VALIDITY_KIND}.disallowed
implies day_validity = {VALIDITY_KIND}.disallowed
Day_validity_optional: day_validity = {VALIDITY_KIND}.optional implies
(hour_validity = {VALIDITY_KIND}.optional or hour_validity =
{VALIDITY_KIND}.disallowed)
Day_validity_disallowed: day_validity = {VALIDITY_KIND}.disallowed implies
hour_validity = {VALIDITY_KIND}.disallowed
Hour_validity_optional: hour_validity = {VALIDITY_KIND}.optional implies
(minute_validity = {VALIDITY_KIND}.optional or minute_validity =
{VALIDITY_KIND}.disallowed)
Hour_validity_disallowed: hour_validity = {VALIDITY_KIND}.disallowed
implies minute_validity = {VALIDITY_KIND}.disallowed
Minute_validity_optional: minute_validity = {VALIDITY_KIND}.optional implies
(second_validity = {VALIDITY_KIND}.optional or second_validity =
{VALIDITY_KIND}.disallowed)
Minute_validity_disallowed: minute_validity = {VALIDITY_KIND}.disallowed
implies second_validity = {VALIDITY_KIND}.disallowed
Second_validity_optional: second_validity = {VALIDITY_KIND}.optional implies
(millisecond_validity = {VALIDITY_KIND}.optional or
millisecond_validity = {VALIDITY_KIND}.disallowed)
Second_validity_disallowed: second_validity = {VALIDITY_KIND}.disallowed
implies millisecond_validity = {VALIDITY_KIND}.disallowed
Validity_is_range: validity_is_range = (range /= Void)

CLASS C_DATE_TIME
Editors:T Beale Page 45 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

The Primitive Package Archetype Object Model
Rev 2.0.2
6.2.9 C_DURATION Class

CLASS C_DURATION

Purpose

ISO 8601-compatible constraint on instances of Duration. In ISO 8601 terms,
constraints might are of the form “PWD” (weeks and/or days), “PDTHMS” (days,
hours, minutes, seconds) and so on. In official ISO 8601:2004, the ‘W’ (week)
designator cannot be mixed in; allowing it is an openEHR-wide exception. Both
range and the constraint pattern can be set at the same time, corresponding to the
ADL constraint PWD/|P0W..P50W|.

Inherit C_PRIMITIVE

Attributes Signature Meaning

0..1 years_allowed: Boolean True if years are allowed in the constrained
Duration.

0..1 months_allowed: Boolean True if months are allowed in the constrained
Duration.

0..1 weeks_allowed: Boolean True if weeks are allowed in the constrained
Duration.

0..1 days_allowed: Boolean True if days are allowed in the constrained
Duration.

0..1 hours_allowed: Boolean True if hours are allowed in the constrained
Duration.

0..1 minutes_allowed: Boolean True if minutes are allowed in the con-
strained Duration.

0..1 seconds_allowed: Boolean True if seconds are allowed in the con-
strained Duration.

0..1 fractional_seconds_allowed:
Boolean

True if fractional seconds are allowed in the
constrained Duration.

0..1 range: Interval<Duration> Range of Durations specifying constraint

1..1
(redefined)

assumed_value: Duration The value to assume if this item is not
included in data, due to being part of an
optional structure.

Invariant
Range_valid: range /= Void or (years_allowed or months_allowed or
weeks_allowed or days_allowed or hours_allowed or minutes_allowed or
seconds_allowed or fractional_seconds_allowed)
Date of Issue: 20 Nov 2008 Page 46 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model Ontology Package
Rev 2.0.2
7 Ontology Package

7.1 Overview
All linguistic and terminological entities in an archetype are represented in the ontology part of an
archetype, whose semantics are given in the Ontology package, shown below.

An archetype ontology consists of the following things.

• A list of terms defined local to the archetype. These are identified by ‘atNNNN’ codes, and
perform the function of archetype node identifiers from which paths are created. There is
one such list for each natural language in the archetype. A term ‘at0001’ defined in English
as ‘blood group’ is an example.

• A list of external constraint definitions, identified by ‘acNNNN’ codes, for constraints
defined external to the archetype, and referenced using an instance of a CONSTRAINT_REF.
There is one such list for each natural language in the archetype. A term ‘ac0001’ corre-
sponding to ‘any term which is-a blood group’, which can be evaluated against some exter-
nal terminology service.

• Optionally, a set of one or more bindings of term definitions to term codes from external ter-
minologies.

• Optionally, a set of one or more bindings of the external constraint definitions to external
resources such as terminlogies.

7.2 Semantics
Specialisation Depth
Any given archetype occurs at some point in a hierarchy of archetypes related by specialisation,
where the depth is indicated by the specialisation_depth attribute. An archetype which is not a spe-

ARCHETYPE_ONTOLOGY
terminologies_available[1]: Set<String>
specialisation_depth[1]: Integer
term_codes[1]: List<String>
constraint_codes[1]: List<String>
term_attribute_names[1]: List<String>
has_language(a_lang: String): Boolean
has_terminology(a_terminology_id: String): Boolean
has_term_code(a_code: String): Boolean
has_constraint_code(a_code: String): Boolean
constraint_definition(a_lang, a_code: String):
ARCHETYPE_TERM
term_definition(a_lang, a_code: String):
ARCHETYPE_TERM
constraint_binding(a_terminology, a_code: String):
String
term_binding(a_terminology, a_code: String):
CODE_PHRASE

ARCHETYPE
ARCHETYPE_TERM
code[1]: String
items[1]: Hash<String, String>

ontology

FIGURE 9 openehr.am.archetype.ontology Package

ontology

1

parent_archetype

1

(archetype)
Editors:T Beale Page 47 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Ontology Package Archetype Object Model
Rev 2.0.2
cialisation of another has a specialisation_depth of 0. Term and constraint codes introduced in the
ontology of specialised archetypes (i.e. which did not exist in the ontology of the parent archetype)
are defined in a strict way, using ‘.’ (period) markers. For example, an archetype of specialisation
depth 2 will use term definition codes like the following:

• ‘at0.0.1’ - a new term introduced in this archetype, which is not a specialisation of any pre-
vious term in any of the parent archetypes;

• ‘at0001.0.1’ - a term which specialises the ‘at0001’ term from the top parent. An interven-
ing ‘.0’ is required to show that the new term is at depth 2, not depth 1;

• ‘at0001.1.1’ - a term which specialises the term ‘at0001.1’ from the immediate parent,
which itself specialises the term ‘at0001’ from the top parent.

This systematic definition of codes enables software to use the structure of the codes to more quickly
and accurately make inferences about term definitions up and down specialisation hierarchies. Con-
straint codes on the other hand do not follow these rules, and exist in a flat code space instead.

Term and Constraint Definitions
Local term and constraint definitions are modelled as instances of the class ARCHETYPE_TERM, which
is a code associated with a list of name/value pairs. For any term or constraint definition, this list must
at least include the name/value pairs for the names “text” and “description”. It might also include
such things as “provenance”, which would be used to indicate that a term was sourced from an exter-
nal terminology. The attribute term_attribute_names in ARCHETYPE_ONTOLOGY provides a list of
attribute names used in term and constraint definitions in the archetype, including “text” and
“description”, as well as any others which are used in various places.

7.3 Class Descriptions

7.3.1 ARCHETYPE_ONTOLOGY Class

CLASS ARCHETYPE_ONTOLOGY

Purpose Local ontology of an archetype.

Attributes Signature Meaning

1..1 terminologies_available:
Set<String>

List of terminologies to which term or con-
straint bindings exist in this terminology.

1..1

specialisation_depth: Integer Specialisation depth of this archetype.
Unspecialised archetypes have depth 0, with
each additional level of specialisation adding
1 to the specialisation_depth.
Date of Issue: 20 Nov 2008 Page 48 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model Ontology Package
Rev 2.0.2
1..1

term_codes: List<String> List of all term codes in the ontology. Most of
these correspond to “at” codes in an ADL
archetype, which are the node_ids on
C_OBJECT descendants. There may be an
extra one, if a different term is used as the
overall archetype concept from that used as
the node_id of the outermost C_OBJECT in the
definition part.

1..1

constraint_codes:
List<String>

List of all term codes in the ontology. These
correspond to the “ac” codes in an ADL
archetype, or equivalently, the
CONSTRAINT_REF.reference values in the
archetype definition.

1..1
term_attribute_names:
List<String>

List of ‘attribute’ names in ontology terms,
typically includes ‘text’, ‘description’, ‘prov-
enance’ etc.

1..1 parent_archetype: ARCHETYPE Archetype which owns this ontology.

Functions Signature Meaning

has_language(a_lang: String):
Boolean

True if language ‘a_lang’ is present in arche-
type ontology.

has_terminology(a_terminology
_id: String): Boolean
require
has_terminology(a_terminology_
id)

True if terminology ‘a_terminology’ is
present in archetype ontology.

has_term_code(a_code:
String): Boolean

True if term_codes has a_code.

has_constraint_code(a_code:
String): Boolean

True if constraint_codes has a_code.

constraint_definition(a_lang,
a_code: String):
ARCHETYPE_TERM
require
has_language(a_lang)
has_constraint_code(a_code)

Constraint definition for a code, in a speci-
fied language.

CLASS ARCHETYPE_ONTOLOGY
Editors:T Beale Page 49 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Ontology Package Archetype Object Model
Rev 2.0.2
7.3.2 ARCHETYPE_TERM Class

term_binding
(a_terminology_id, a_code:
String): CODE_PHRASE
require
has_terminology(a_terminology_
id)
has_term_code(a_code)

Binding of term corresponding to a_code in
target external terminology a_terminology_id
as a CODE_PHRASE.

constraint_binding
(a_terminology_id, a_code:
String): String
require
has_terminology(a_terminology_
id)
has_constraint_code(a_code)

Binding of constraint corresponding to
a_code in target external terminology
a_terminology_id, as a string, which is usu-
ally a formal query expression.

Invariant

terminologies_available_exists: terminologies_available /= void
term_codes_exists: term_codes /= void
constraint_codes_exists: constraint_codes /= void
term_bindings_exists: term_bindings /= void
constraint_bindings_exists: constraint_bindings /= void
term_attribute_names_valid: term_attribute_names /= void and then
term_attribute_names.has(“text”) and term_attribute_names.has(“description”)
Parent_archetype_valid: parent_archetype /= Void and then
parent_archetype.description = Current

CLASS ARCHETYPE_TERM

Purpose Representation of any coded entity (term or constraint) in the archetype ontology.

Attributes Signature Meaning

1..1 code: String Code of this term.

0..1 items: Hash <String,
String>

Hash of keys (“text”, “description” etc) and
corresponding values.

Functions Signature Meaning

1..1 keys: Set<String> List of all keys used in this term.

Invariant code_valid: code /= void and then not code.is_empty
keys_valid: keys /= Void

CLASS ARCHETYPE_ONTOLOGY
Date of Issue: 20 Nov 2008 Page 50 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Editors:T Beale Page 51 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model
Rev 2.0.2

A Domain-specific Extension Example

A.1 Overview
Domain-specific classes can be added to the archetype constraint model by inheriting from the class
C_DOMAIN_TYPE. This section provides an example of how domain-specific constraint classes are
added to the archetype model. Actual additions to the AOM for openEHR are documented in the
openEHR Archetype Profile (oAP) specification.

A.2 Scientific/Clinical Computing Types
FIGURE 10 shows the general approach, used to add constraint classes for commonly used concepts
in scientific and clinical computing, such as ‘ordinal’ (used heavily in medicine, particularly in
pathology testing), ‘coded term’ (also heavily used in clinical computing) and ‘quantity’, a general
scientific meansurement concept. The constraint types shown are C_ORDINAL, C_CODED_TEXT and
C_QUANTITY which can optionally be used in archetypes to replace the default constraint semantics
represented by the use of instances of C_OBJECT / C_ATTRIBUTE to constrain ordinals, coded terms
and quantities. The following model is intended only as an example, and does not try to define any
normative semantics of the particular constraint types shown.

C_DOMAIN_TYPE

clinical_archetypes

FIGURE 10 Example Domain-specific Package

C_ORDINAL C_CODED_TEXT
terminology: String
code_list: List<String>
reference: String

C_QUANTITY
property: String

C_QUANTITY_ITEM
magnitude: Interval<Real>
units: String

list 0..*
ORDINAL
symbol: CODE_PHRASE
value: Integer

list 0..*

Date of Issue: 20 Nov 2008 Page 52 of 54 Editors:T Beale

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model
Rev 2.0.2

B Using Archetypes with Diverse Reference Models

B.1 Overview
The archetype model described in this document can be used with any reference model which is
expressed in UML or a similar object-oriented formalism. It can also be used with E/R models. The
following section describes is use a number of reference models used in clinical computing.

B.2 Clinical Computing Use
To Be Continued:

• data types
• class naming
• domain archetype semantics versus LCD semantics of exchange models
• mapping from C_DOMAIN_TYPE subtypes into various RMs

B.2.1 openEHR

B.2.2 CEN ENV13606

B.2.3 HL7 Clinical Document Architecture (CDA)

Editors:T Beale Page 53 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetype Object Model
Rev 2.0.2

C References
Publications
1 Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Systems.

OOPSLA 2002 workshop on behavioural semantics.
Available at http://www.deepthought.com.au/it/archetypes.html.

2 Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Systems. 2000.
Available at http://www.deepthought.com.au/it/archetypes.html.

3 Beale T, Heard S. The Archetype Definition Language (ADL). See http://www.openehr.org/re-
positories/spec-dev/latest/publishing/architecture/archetypes/lan-
guage/ADL/REV_HIST.html.

4 Heard S, Beale T. Archetype Definitions and Principles. See http://www.openehr.org/reposi-
tories/spec-dev/latest/publishing/architecture/archetypes/princi-
ples/REV_HIST.html.

5 Heard S, Beale T. The openEHR Archetype System. See http://www.openehr.org/reposito-
ries/spec-dev/latest/publishing/architecture/archetypes/system/REV_HIST.ht-
ml.

6 Rector A L. Clinical Terminology: Why Is It So Hard? Yearbook of Medical Informatics 2001.
7 W3C. OWL - The Web Ontology Language.

See http://www.w3.org/TR/2003/CR-owl-ref-20030818/.
8 Horrocks et al. An OWL Abstract Syntax.

See http://www.w3.org/xxxx/.

Resources
9 openEHR. EHR Reference Model. See http://www.openehr.org/repositories/spec-

dev/latest/publishing/architecture/top.html.
10 OMG. The Object Constraint Language 2.0. Available at http://www.omg.org/cgi-

bin/doc?ptc/2003-10-14.

http://www.deepthought.com.au/it/archetypes.html
http://www.deepthought.com.au/it/archetypes.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/system/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/system/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/system/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/principles/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/principles/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/principles/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/language/ADL/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/language/ADL/REV_HIST.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/archetypes/language/ADL/REV_HIST.html
http://www.w3.org/TR/2003/CR-owl-ref-20030818/
http://www.w3.org/TR/2003/CR-owl-ref-20030818/
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/top.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/top.html
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14

Archetype Object Model
Rev 2.0.2

Editors:T Beale Page 54 of 54 Date of Issue: 20 Nov 2008

© 2004-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

END OF DOCUMENT

	Copyright Notice
	Amendment Record
	Trademarks
	1 Introduction
	1.1 Purpose
	1.2 Related Documents
	1.3 Nomenclature
	1.4 Status
	1.5 Background
	1.5.1 What is an Archetype?
	1.5.2 Context

	1.6 Tools
	1.7 Changes from Previous Versions
	1.7.1 Version 0.6 to 2.0

	2 The Archetype Object Model
	2.1 Design Background
	2.2 Package Structure
	2.3 Model Overview
	2.3.1 Archetypes as Objects
	2.3.2 The Archetype Ontology
	2.3.3 Archetype Specialisation
	2.3.4 Archetype Composition

	3 The Archetype Package
	3.1 Overview
	3.2 Class Descriptions
	3.2.1 ARCHETYPE Class
	3.2.2 VALIDITY_KIND Class

	4 Constraint Model Package
	4.1 Overview
	4.2 Semantics
	4.2.1 All Node Types
	4.2.2 Attribute Node Types
	4.2.3 Object Node Types
	4.2.3.1 Defined Object Nodes (C_DEFINED_OBJECT)
	4.2.3.2 Complex Objects (C_COMPLEX_OBJECT)
	4.2.3.3 Primitive Types
	4.2.3.4 Domain-specific Extensions (C_DOMAIN_TYPE)
	4.2.3.5 Reference Objects (C_REFERENCE_OBJECT)

	4.2.4 Assertions

	4.3 Class Definitions
	4.3.1 ARCHETYPE_CONSTRAINT Class
	4.3.2 C_ATTRIBUTE Class
	4.3.3 C_SINGLE_ATTRIBUTE Class
	4.3.4 C_MULTIPLE_ATTRIBUTE Class
	4.3.5 CARDINALITY Class
	4.3.6 C_OBJECT Class
	4.3.7 C_DEFINED_OBJECT Class
	4.3.8 C_COMPLEX_OBJECT Class
	4.3.9 C_PRIMITIVE_OBJECT Class
	4.3.10 C_DOMAIN_TYPE Class
	4.3.11 C_REFERENCE_OBJECT Class
	4.3.12 ARCHETYPE_SLOT Class
	4.3.13 ARCHETYPE_INTERNAL_REF Class
	4.3.14 CONSTRAINT_REF Class

	5 The Assertion Package
	5.1 Overview
	5.2 Semantics
	5.3 Class Descriptions
	5.3.1 ASSERTION Class
	5.3.2 EXPR_ITEM Class
	5.3.3 EXPR_LEAF Class
	5.3.4 EXPR_OPERATOR Class
	5.3.5 EXPR_UNARY_OPERATOR Class
	5.3.6 EXPR_BINARY_OPERATOR Class
	5.3.7 ASSERTION_VARIABLE Class
	5.3.8 OPERATOR_KIND Class

	6 The Primitive Package
	6.1 Overview
	6.2 Class Descriptions
	6.2.1 C_PRIMITIVE Class
	6.2.2 C_BOOLEAN Class
	6.2.3 C_STRING Class
	6.2.4 C_INTEGER Class
	6.2.5 C_REAL Class
	6.2.6 C_DATE Class
	6.2.7 C_TIME Class
	6.2.8 C_DATE_TIME Class
	6.2.9 C_DURATION Class

	7 Ontology Package
	7.1 Overview
	7.2 Semantics
	7.3 Class Descriptions
	7.3.1 ARCHETYPE_ONTOLOGY Class
	7.3.2 ARCHETYPE_TERM Class

	A Domain-specific Extension Example
	B Using Archetypes with Diverse Reference Models
	C References

